I got this residuals vs fitted values plot.
As you can see there are some clear patterns of linearity. My guess is that the response depend on another variable that acts as a parameter to obtain theses lines, ie: the response should be better described as something of the form:
$$ Y = \alpha Z \cdot g(X) + e $$
for a $Z$ fixed one would obtain one of the lines we see in the plot. What would you think ?
Edit: Sample of the dataset.
>Boston[1:25,]
crim zn indus chas nox rm age dis rad tax ptratio black
1 0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 396.90
2 0.02731 0.0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.90
3 0.02729 0.0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83
4 0.03237 0.0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.63
5 0.06905 0.0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 396.90
6 0.02985 0.0 2.18 0 0.458 6.430 58.7 6.0622 3 222 18.7 394.12
7 0.08829 12.5 7.87 0 0.524 6.012 66.6 5.5605 5 311 15.2 395.60
8 0.14455 12.5 7.87 0 0.524 6.172 96.1 5.9505 5 311 15.2 396.90
9 0.21124 12.5 7.87 0 0.524 5.631 100.0 6.0821 5 311 15.2 386.63
10 0.17004 12.5 7.87 0 0.524 6.004 85.9 6.5921 5 311 15.2 386.71
11 0.22489 12.5 7.87 0 0.524 6.377 94.3 6.3467 5 311 15.2 392.52
12 0.11747 12.5 7.87 0 0.524 6.009 82.9 6.2267 5 311 15.2 396.90
13 0.09378 12.5 7.87 0 0.524 5.889 39.0 5.4509 5 311 15.2 390.50
14 0.62976 0.0 8.14 0 0.538 5.949 61.8 4.7075 4 307 21.0 396.90
15 0.63796 0.0 8.14 0 0.538 6.096 84.5 4.4619 4 307 21.0 380.02
16 0.62739 0.0 8.14 0 0.538 5.834 56.5 4.4986 4 307 21.0 395.62
17 1.05393 0.0 8.14 0 0.538 5.935 29.3 4.4986 4 307 21.0 386.85
18 0.78420 0.0 8.14 0 0.538 5.990 81.7 4.2579 4 307 21.0 386.75
19 0.80271 0.0 8.14 0 0.538 5.456 36.6 3.7965 4 307 21.0 288.99
20 0.72580 0.0 8.14 0 0.538 5.727 69.5 3.7965 4 307 21.0 390.95
21 1.25179 0.0 8.14 0 0.538 5.570 98.1 3.7979 4 307 21.0 376.57
22 0.85204 0.0 8.14 0 0.538 5.965 89.2 4.0123 4 307 21.0 392.53
23 1.23247 0.0 8.14 0 0.538 6.142 91.7 3.9769 4 307 21.0 396.90
24 0.98843 0.0 8.14 0 0.538 5.813 100.0 4.0952 4 307 21.0 394.54
25 0.75026 0.0 8.14 0 0.538 5.924 94.1 4.3996 4 307 21.0 394.33