$X \sim N(0,2) \quad Y \sim N(0,1) \quad Cov(X,Y) = 0.5 \quad Z = X + XY + Y$
find:
1) $E(Y|X)$ and $Var(Y|X)$
2) $E(Z|X)$ and $Var(Z|X)$
3) $E(Z)$ and $Var(Z)$
4) $Cov(Z,Y|X)$
5) joint distribution of $Z$ and $Y$ conditional on $X$
I'm stuck from question 3) onwards since I'm not able to compute $Var(Z)$.
Is there a textbook, possibly free and online, explaining these issues and providing exercises WITH SOLUTIONS?
1)
$E(Y|X) = E(Y) + \frac{Cov(X,Y)}{Var(X)}(X - E(X)) = 0.25 X$
$Var(Y|X) = Var(Y) - \frac{Cov(X,Y)^2}{Var(X)} = 1 - \frac{0.5^2}{2} = 0.875$
2)
$E(Z) = E(X) + E(XY) + E(Y) = 0 + Cov(X,Y) + E(X)E(Y) + 0 = 0.5$
$Var(Z) = Var(X) + Var(XY) + Var(Y) + 2 Cov(X,XY) + 2 Cov(XY,Y) + 2 Cov(X,Y)$
I am not sure this is the right way of computing $Var(Z)$ and I'm not able to compute $Cov(X,XY)$