You want to assess whether the probability $\Pr(X>1)$ is significantly higher than $99\%$.
To do so, you can derive a confidence interval about $\Pr(X>1)$. For example you can get such a confidence interval using the Bayesian approach with the Jeffreys prior.
Another way is to use a lower tolerance limit. If the lower $(1-\alpha, p=99\%)$-tolerance limit is higher than $1$, then the probability $\Pr(X>1)$ is significantly higher than $99\%$ at the $\alpha$-level of significance.
Example:
> # simulated sample
> set.seed(666)
> y <- rnorm(40, mean=5, sd=1)
> # tolerance limit
> library(tolerance)
> normtol.int(y, alpha=0.05, P=0.99, side=1)
alpha P x.bar 1-sided.lower 1-sided.upper
1 0.05 0.99 4.874011 1.353383 8.394639
The lower tolerance limit is $\approx 1.35 > 1$, then $\Pr(X>1)$ is significantly higher than $99\%$ at the significance level $\alpha=5\%$.
Using the Jeffreys Bayesian approach:
> Jeffreys <- function(y, nsims=100000){
+ n <- length(y)
+ sigma <- sqrt(c(crossprod(y-mean(y)))/rchisq(nsims,n))
+ mu <- rnorm(nsims, mean(y), sigma/sqrt(n))
+ list(mu=mu, sigma=sigma)
+ }
> # posterior sampling of Pr(Y>1)
> nsims <- 100000
> sims_musigma <- Jeffreys(y, nsims)
> sims_pr <- numeric(nsims)
> for(i in 1:nsims){
+ sims_pr[i] <- 1 - pnorm(1, mean=sims_musigma$mu[i], sd=sims_musigma$sigma[i])
+ }
> # lower confidence bound of Pr(Y>1)
> quantile(sims_pr, 0.05)
5%
0.9954999
The lower $95\%$-confidence bound of $\Pr(X>1)$ is $\approx 99.5\%$, then $\Pr(X>1)$ is significantly higher than $99\%$ at the significance level $\alpha=5\%$.
If you don't like the Jeffreys approach, you can use these approximate confidence bounds of $\Pr(X>q)$:
lower bound: $1 - \Phi\left[\frac{q-\hat\mu}{\hat\sigma}\left(1-\Phi^{-1}(1-\alpha)\sqrt{\dfrac{1}{n{\left(\frac{q-\hat\mu}{\hat\sigma}\right)}^2}+\dfrac{1}{2(n-1)}}\right) \right]$
upper bound: $1 - \Phi\left[\frac{q-\hat\mu}{\hat\sigma}\left(1+\Phi^{-1}(1-\alpha)\sqrt{\dfrac{1}{n{\left(\frac{q-\hat\mu}{\hat\sigma}\right)}^2}+\dfrac{1}{2(n-1)}}\right) \right]$
sources:
Bissell, A. F. (1990), "How Reliable Is Your Capability Index?" Applied Statistics, 30, 331 - 340.
Kushler, R. H. and Hurley, P. (1992), "Confidence Bounds for Capability Indices," Journal of Quality Technology, 24, 188 - 195.
The lower bound is similar to the previous one:
> alpha <- 5/100
> n <- length(y)
> q <- 1
> 1 - pnorm((q-mean(y))/sd(y) * (1-qnorm(1-alpha)*sqrt(1/n/((q-mean(y))/sd(y))^2 + 1/2/(n-1))))
[1] 0.9950559