Using machine learning techniques, is it possible to analyse Employee Check in-Check Out time over a period of time and cluster them.
1. An employee can check-in/checkout any number of times in a day.
2. They have a defined roster schedule.
3. Employees may go to different buildings for work.
4. Location, department can be some additional fields while clustering.
Edit:
How to represent multiple check-in/check-out in a day to expose to time series algorithm and then cluster ?
Sample test data of 6 employees for a week period
https://www.dropbox.com/s/5f9hxuyr12x26rc/testData.csv?dl=0
* Initials rows *
Idnumber,Dept,EventTime,Location
1651589,D2000,2017-08-14 15:39:02,BLDG2-7F-D015 Entry
1651589,D2000,2017-08-14 15:38:54,BLDG2-7F-D018 Exit
83240,D1000,2017-08-14 15:22:37,BLDG1-4F-D004
1651589,D2000,2017-08-14 15:11:26,BLDG2-7F-D018 Entry
1651589,D2000,2017-08-14 15:11:20,BLDG2-7F-D015 Exit
62879,D1000,2017-08-14 14:49:15,BLDG1-4F-D004
62879,D1000,2017-08-14 14:47:10,BLDG1-3F-D004
83240,D1000,2017-08-14 14:45:40,BLDG1-4F-D006 Entry
83240,D1000,2017-08-14 14:37:53,BLDG1-4F-D006 Exit
84778,D1000,2017-08-14 14:24:41,BLDG2-GF-G018 Entry
1662394,D2000,2017-08-14 14:13:11,BLDG2-1F-G025 Entry
1662394,D2000,2017-08-14 14:12:19,BLDG2-1F-G025 Exit
84778,D1000,2017-08-14 14:11:17,BLDG1-GF-G003 Exit
...