Question
Consider a population of known size $N$, from which we sample $n$ individuals without replacement and measure their trait values $x_i$ for all individual $i$. The variable $x$ is bounded [0,1]
.
Let $\mu = \frac{\sum_i^N x_i}{N}$ be the average trait value in the population and $\sigma^2 = \frac{\sum_i^N (x_i - \mu)^2}{N}$ be the variance in the population.
What is the unbiased estimator for $\frac{\sigma^2}{\mu (1 - \mu)}$?
Attempt
I got estimators for both the numerator ($\sigma^2$) and denominator ($\mu (1-\mu)$).
First few definitions
First let
$$\bar x = \frac{\sum_i^n x_i}{n}$$
and
$$s^2 = \frac{\sum_i^n (x_i - \bar x)^2}{n-1}$$
Numerator
From this post, the unbiased estimator for $\sigma^2$ is
$$\sigma^2 = \operatorname{E}\left[\frac{(N-1)s^2}{N}\right]$$
Denominator
The unbiased estimator of $\mu - \mu^2$ is
$$ \begin{align} \mu - \mu^2 &= \operatorname{E}[\bar x] - \operatorname{E}[\bar x]^2\\ &= \operatorname{E}[\bar x] - \operatorname{E}[\bar x]^2 - \operatorname{var}[\bar X] + \operatorname{var}[\bar x] \\ &= \operatorname{E}[\bar x] - \operatorname{E}[\bar x^2] + \operatorname{var}[\bar x] \end{align}$$
From utexas
$$ \operatorname{var}[\bar X] = \operatorname{E}\left[\frac{s^2}{n}\left(1-\frac{n}{N}\right)\right]$$
Therefore,
$$\mu - \mu^2 = \operatorname{E}\left[\bar x - \bar x^2 + \frac{s^2}{n}\left(1-\frac{n}{N}\right)\right]$$
Putting numerator and denominator together
If the two estimators were independent, then the product of the expectations would be the expectation of the product but the numerator is not independent of the denominator!
I suppose I would now need to compute something like
$$ \begin{align} \frac{\sigma^2}{\mu (1 - \mu)} &= \operatorname{E}\left[\frac{\frac{(N-1)s^2}{N}}{\bar x - \bar x^2 + \frac{s^2}{n}\left(1-\frac{n}{N}\right)} + \operatorname{cov}\left[\operatorname{var}\left[x\right], \frac{1}{\bar x - \bar x^2}\right]\right] \\ &= \operatorname{E}\left[\frac{\frac{(N-1)s^2}{N}}{\bar x - \bar x^2 + \frac{s^2}{n}\left(1-\frac{n}{N}\right)}\right] + \operatorname{E}\left[\frac{\operatorname{var}\left[x\right]}{\bar x - \bar x^2}\right] - \operatorname{E}\left[\operatorname{var}\left[x\right]\right]\operatorname{E}\left[\frac{1}{\bar x - \bar x^2}\right]\\ \end{align} $$
but I am getting lost there!