Before running a linear mixed model I transformed my response variable with log(x+1) to get closer to a normal distribution of residuals. Doing so I get these results (for a simplified example):
Estimate Upper CI Limits Lower CI Limits p-value
level1 0.6518415 0.8720254 0.4316577
level2 0.8431060 1.0625152 0.6236968 0.071
level3 0.5089360 0.7258301 0.2920420 0.170
level4 0.3987420 0.6166745 0.1808096 0.017
Am I right that p-values can be interpreted without back-transformation?
Can I back-transform estimates and CI-Limits by exp(estimate)-1 or exp(limit)-1 which results in the following?
Estimate Upper CI Limits Lower CI Limits p-value
level1 0.9190715 1.3917500 0.5398079
level2 1.3235730 1.8936400 0.8658128 0.071
level3 0.6635203 1.0664460 0.3391593 0.170
level4 0.4899492 0.8527564 0.1981870 0.017