I need to utilize two different classifier to get best classification results. Since, it seems that they complement each other (not sure I am not expert btw). ROC characteristics are given below (testing scheme is 10-fold cross validation):
MetaCost [0 8; 1 0] Alternating Decision Tree (ADTree)
TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.973 0.62 0.119 0.973 0.212 0.696 YES
0.38 0.027 0.994 0.38 0.55 0.696 NO
Weighted Avg. 0.427 0.074 0.925 0.427 0.523 0.696
MetaCost [0 8; 1 0] Logistic
TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.604 0.161 0.245 0.604 0.348 0.771 YES
0.839 0.396 0.961 0.839 0.896 0.769 NO
Weighted Avg. 0.821 0.377 0.904 0.821 0.853 0.769
I have tried Voting
but could not get desired results. Therefore, it is time to seek for expert help. Could you please advise me a solution, if possible?
Thanks in advance. Also, as a reminder I am not an expert.
EDIT: Best I can get:
Vote combines the probability distributions of these base learners:
weka.classifiers.meta.AdaBoostM1 -P 100 -S 1 -I 10 -W weka.classifiers.meta.MetaCost -- -cost-matrix "[0.0 8.0; 1.0 0.0]" -I 10 -P 100 -S 1 -W weka.classifiers.trees.ADTree -- -B 10 -E -3
weka.classifiers.meta.AdaBoostM1 -P 100 -S 1 -I 10 -W weka.classifiers.meta.MetaCost -- -cost-matrix "[0.0 8.0; 1.0 0.0]" -I 10 -P 100 -S 1 -W weka.classifiers.functions.Logistic -- -R 1.0E-8 -M -1
using the 'Product of Probabilities' combination rule
TP Rate FP Rate Precision Recall F-Measure ROC Area Class
0.706 0.204 0.231 0.706 0.348 0.825 YES
0.796 0.294 0.969 0.796 0.874 0.825 NO
Weighted Avg. 0.789 0.287 0.91 0.789 0.832 0.825