Consider data consisting of pairs $(y_i, x_i)$ for $i = 1,..,n$ arising from a non-linear regression model:
$y_i = \alpha + \beta\sin(\omega x_i + \delta) + \epsilon_i$ where $\epsilon_i \sim N(0,\sigma^2)$
and $\alpha, \beta, \omega, \delta,$ and $\sigma^2$ are all unknown parameters.
This can be rewritten as:
$y_i = \alpha + \gamma_1\sin(\omega x_i) + \gamma_2\cos(\omega x_i) + \epsilon_i$ where $\epsilon_i \sim N(0,\sigma^2)$
How do I get from one to the other, and what is the relationship between $(\gamma_1,\gamma_2)$ and $(\beta,\delta)$?