We have
\begin{equation}
\begin{split}
\|X^T - S^TAX^T \| & = \text{Tr}(X^T - S^TAX^T)^T(X^T - S^TAX^T) \\
& = \text{Tr}(X - (S^TAX^T)^T)(X^T - S^TAX^T) \\
& = \text{Tr}(XX^T - XS^TAX^T -(S^TAX^T)^TX^T + (S^TAX^T)^T(S^TAX^T))\\
& = \text{Tr}(XX^T) - 2\text{tr}(XS^TAX^T) + \text{tr}(XA^TSS^TAX^T))\\
\end{split}
\end{equation}
Then,
It is clear that
$$ \frac{\partial \text{Tr}(XX^T)}{\partial A} = 0. $$
For the second term we have :
\begin{equation}
\begin{split}
\frac{\partial (2\text{tr}(XS^TAX^T))}{\partial A} & = \frac{\partial (2\text{Tr}(X^TXS^TA))}{\partial A} \\
& = 2(X^TXS^T)^T \\
& = 2SX^TX. \\
\end{split}
\end{equation}
Here, we used formula 100 of the TheMatrixCookBook: $\frac{\partial \text{Tr}(AX)}{\partial X} = A^T$
For the last term we have (formula 116 of the TheMatrixCookBook):
\begin{equation}
\begin{split}
\frac{\partial \text{Tr}(XA^TSS^TAX^T))}{\partial A} & = SS^TAX^TX + SS^TAX^TX \\
& = 2SS^TAX^TX \\
\end{split}
\end{equation}
Putting all together we obtain:
\begin{equation}
\begin{split}
\frac{\partial \|X^T - S^TAX^T \| }{\partial A} & = 2SS^TAX^TX - 2SX^TX\\
& = 2S(S^TAX^T - X^T)X \\
\end{split}
\end{equation}