Let me just give a little suggestion:
If $X_1,..,X_n \sim Exp(\frac{1}{\theta})$ ($\frac{1}{\theta}>0$)Then
$Y$ = $\sum_{i=1}^n X_i \sim \Gamma(n,\frac{1}{\theta})$, ($n>0)$
Then, $Z=a*Y-b$. Now proceed finding the distribution of $Z$.. (https://onlinecourses.science.psu.edu/stat414/node/157)
After bounty:
Let me complete how I would proceed:
$Y=g(Z)= \frac{Z+b}{a}$
$g'(Z)=\frac{1}{a}$
$f_Z(z)=f_Y(g(Z))*|g'(Z)|$
= $\frac{(\frac{1}{\theta})^n}{\Gamma(n)} * (\frac{z+b}{a})^{n-1}*exp(-\frac{z+b}{\theta*a}) * \frac{1}{a}$ ..
At this point I would integrate this distribution with the integral equal to 1, namely:
$\int_{-\infty}^{+\infty} f_Z(z)d(z) = 1$
I think a change of variables to get rid of the $b$ inside the integral could be an idea.