For predicted labels $\hat{y}$ and true labels $y\in\{0,1\}$, the confusion matrix is given by
\begin{array}{c|c:c|c}
& y=0 & y=1 & \\
\hline
\hat{y}=0 & \mathrm{TN} & \mathrm{FN} & \hat{\mathrm{N}} \\
\hdashline
\hat{y}=1 & \mathrm{FP} & \mathrm{TP} & \hat{\mathrm{P}} \\
\hline
& \mathrm{N} & \mathrm{P} & (n_{\mathrm{obs}})
\end{array}
where the entries are counts, $\mathrm{N}$ = "Negative", $\mathrm{P}$ = "Positive", $\mathrm{T}$ = "True", and $\mathrm{F}$ = "False".
The confusion matrix proper is contained within the solid-outlined box, to which I have added the column sums ($\mathrm{N}$,$\mathrm{P}$), column sums ($\hat{\mathrm{N}}$,$\hat{\mathrm{P}}$), and total sum ($n_{\mathrm{obs}}$ = number of paired observations).
The confusion matrix is essentially an empirical estimate of the joint distribution between $\hat{y}$ and $y$, i.e. when the entries are normalized by $n_{\mathrm{obs}}$ we get
\begin{array}{c|c:c|c}
& y=0 & y=1 & \\
\hline
\hat{y}=0 & p[\sim\!\hat{y},\sim\!y] & p[\sim\!\hat{y},\phantom{\sim\!}y] & p[\sim\!\hat{y}] \\
\hdashline
\hat{y}=1 & p[\phantom{\sim}\,\hat{y},\sim\!y] & p[\phantom{\sim}\,\hat{y},\phantom{\sim\!}y] & p[\phantom{\sim}\,\hat{y}] \\
\hline
& p[\phantom{\sim\hat{y}}\sim\!y] & p[\phantom{\sim\hat{y},,}\,y] & (1)
\end{array}
where I have switched to a Boolean-style notation with $\sim$ = "not".
In the margins of the table (outside the box), the normalized row and column sums are now the marginal probabilities.
Within this framework, many of the standard confusion matrix based metrics correspond directly to the various conditional probabilities of the above joint distribution.
If we condition on $\boldsymbol{y}$ the table becomes
\begin{array}{|c:c|}
\hline
p[\sim\!\hat{y}\mid\sim\!y] & p[\sim\!\hat{y}\mid\phantom{\sim\!}y] \\
\hdashline
p[\phantom{\sim}\,\hat{y}\mid\sim\!y] & p[\phantom{\sim}\,\hat{y}\mid\phantom{\sim\!}y] \\
\hline
\end{array}
where the entries correspond to the metrics
\begin{array}{|c:c|}
\hline
\text{specificity}
&
\text{miss rate} \\
\hdashline
\text{fall-out}
&
\text{sensitivity (recall)}
\\
\hline
\end{array}
(Note that these metrics can also be referred to by appending "rate" to the corresponding name from the confusion matrix.)
Alternatively, if we condition on $\boldsymbol{\hat{y}}$ the table becomes
\begin{array}{|c:c|}
\hline
p[\sim\!y\mid\sim\!\hat{y}] & p[\phantom{\sim\!}y\mid\sim\!\hat{y}] \\
\hdashline
p[\sim\!y\mid\phantom{\sim}\hat{y}] & p[\phantom{\sim\!}y\mid\phantom{\sim}\hat{y}] \\
\hline
\end{array}
where the entries correspond to the metrics
\begin{array}{|c:c|}
\hline
\text{negative predictive value}
&
\text{false omission rate}^* \\
\hdashline
\text{false discovery rate}
&
\text{positive predictive value (precision)}
\\
\hline
\end{array}
(*This one was not in Wikipedia except in their "big table". I was curious why it was the only one of the conditional probabilities not given a special name.)