Suppose that $Y_1, Y_2$ are independent and from a distribution where:
$$ f_\theta(y) = \begin{cases} \frac{3y^2}{\theta^3} &\text{for $0 < y \leq \theta$}, &\theta>0\\ 0 &\text{otherwise} \end{cases} $$
Suppose that I want to find the pdf of the maximum of them, ie, I want to find $T = max(Y_1, Y_2)$.
To do this, I have:
\begin{align} F_T(t) &= P(T \leq t)\\ &= P(max(Y_1, Y_2) \leq t) \\ &= P(Y_1 \leq t, Y_2 \leq t) \\ &= P(Y_1 \leq t) P(Y_2 \leq t)\\ &= \frac{t^6}{\theta^6} \mathbb{1}(t \leq \theta) \end{align}
I obtained $P(Y \leq t)$ as: $P(Y \leq t) = \int_{-\infty}^{t}f_\theta(y)dy = \frac{t^3}{\theta^3}$
$$ f_T(t) = \frac{d}{dt}\frac{t^6}{\theta^6}\mathbb{1}(t \leq \theta) = \frac{6t^5}{\theta^6} \mathbb{1}(t \leq \theta) $$
My question here is:
1) When taking the derivative of $\frac{t^6}{\theta^6}\mathbb{1}(t \leq \theta)$, how do I take into account the indicator random variable?
2) For $P(Y \leq t) = \int_{-\infty}^{t}f_\theta(y)dy = \int_{-\infty}^{t}\frac{3y^2}{\theta^3}\mathbb{1}(y \leq \theta)dy = \frac{t^3}{\theta^3}\mathbb{1}(t \leq \theta)$, how do I handle the indicator $\mathbb{1}(y \leq \theta)$ within the integral?