This is the result of a linear model (MatLab, LinearModel.fit):
Linear regression model:
y ~ 1 + x1 + x2
Estimated Coefficients:
Estimate SE tStat pValue
(Intercept) -0.24454 0.13033 -1.8763 0.081615
x1 0.0032239 0.012141 0.26554 0.79446
x2 0.0050906 0.012375 0.41136 0.68703
Number of observations: 17, Error degrees of freedom: 14
Root Mean Squared Error: 0.376
R-squared: 0.529, Adjusted R-Squared 0.462
F-statistic vs. constant model: 7.86, p-value = 0.00515
The p-value for the model is significant, while there is no significance for the single predictors (nor for the intercept). How should this be interpreted?
Useful info: y
is a behavioural variable (rating of visual images), while x1
and x2
are a brain activity parameter under 2 different conditions. Is a repeated measure design.
Model for x1
alone:
Linear regression model:
y ~ 1 + x1
Estimated Coefficients:
Estimate SE tStat pValue
(Intercept) -0.21339 0.1031 -2.0698 0.056153
x1 0.0081455 0.002008 4.0566 0.0010334
Number of observations: 17, Error degrees of freedom: 15
Root Mean Squared Error: 0.366
R-squared: 0.523, Adjusted R-Squared 0.491
F-statistic vs. constant model: 16.5, p-value = 0.00103
Model for x2
alone:
Linear regression model:
y ~ 1 + x2
Estimated Coefficients:
Estimate SE tStat pValue
(Intercept) -0.2619 0.10918 -2.3988 0.029895
x2 0.0083287 0.0020395 4.0837 0.00097809
Number of observations: 17, Error degrees of freedom: 15
Root Mean Squared Error: 0.364
R-squared: 0.526, Adjusted R-Squared 0.495
F-statistic vs. constant model: 16.7, p-value = 0.000978
Thanks.