I don't know how to interpret the svm summary outputs in R. I show you the reproducible code below. data <- read.csv(file.choose (), header = TRUE, sep=';') set.seed(1234) splitIndex <- createDataPartition( dati[,outcomeName], p = .75, list = FALSE, times = 1) trainDF <- dati[ splitIndex,]
testDF <- dati[-splitIndex,]
model_svm <- svm(Y~.,data = trainDF)
> model_svm_test <- svm(Y~.,data = testDF)
> summary(model_svm)
THESE ARE THE TWO SUMMARY OUTPUTS. THE FIRST ONE FOR TRAIN AND THE SECOND ONE FOR TEST
Call:
svm(formula = Y ~ ., data = trainDF)
Parameters:
SVM-Type: eps-regression
SVM-Kernel: radial
cost: 1
gamma: 0.0625
epsilon: 0.1
Number of Support Vectors: 1886
> summary(model_svm_test)
Call:
svm(formula = Y ~ ., data = testDF)
Parameters:
SVM-Type: eps-regression
SVM-Kernel: radial
cost: 1
gamma: 0.0625
epsilon: 0.1
Number of Support Vectors: 799