I know there's a similar post about this, but I believe my question is a bit different.
In my textbook the author rewrites
$-2(\hat{\beta}_1-\beta_1)\sum u_i (x_i-\bar{x})$
into
$-2(\hat{\beta}_1-\beta_1)^2\sum (x_i-\bar{x})^2$
He doesn't use any expectation or variance operator.
If you don't want to go through my whole calculation, then you can check my final result:
$-2(\hat{\beta}_1-\beta_1)((\hat{\beta}_1-\beta_1)\sum(x_i-\bar{x})^2 +\sum\hat{u}_i(x_i-\bar{x}))$
How can I get rid of the last term?
I started the following:
use
$u_i=y_i-\beta_0-\beta_1x_i$
and substitute into first equation:
$-2(\hat{\beta}_1-\beta_1)\sum (y_i-\beta_0-\beta_1x_i) (x_i-\bar{x})$
use
$y_i=\hat{y}_i+\hat{u}_i$ -> $y_i=\hat{\beta}_0+ \hat{\beta}_1 x_i+\hat{u}_i$
and substitute into the following equation
$-2(\hat{\beta}_1-\beta_1)\sum (y_i-\beta_0-\beta_1x_i) (x_i-\bar{x})$
->
$-2(\hat{\beta}_1-\beta_1)\sum ((\hat{\beta}_0+ \hat{\beta}_1 x_i+\hat{u}_i)-\beta_0-\beta_1x_i) (x_i-\bar{x})$
simplifying the equation above gives
$-2(\hat{\beta}_1-\beta_1)\sum (\hat{\beta}_0+ \hat{\beta}_1 x_i+\hat{u}_i-\beta_0-\beta_1x_i) (x_i-\bar{x})$
multiply with $(x_i-\bar{x})$
$-2(\hat{\beta}_1-\beta_1)\sum (\hat{\beta}_0(x_i-\bar{x})+ \hat{\beta}_1 x_i(x_i-\bar{x})+\hat{u}_i(x_i-\bar{x})-\beta_0(x_i-\bar{x})-\beta_1x_i(x_i-\bar{x}))$
set brackets before summation operator
$-2(\hat{\beta}_1-\beta_1)(\sum (\hat{\beta}_0(x_i-\bar{x})+ \hat{\beta}_1 x_i(x_i-\bar{x})+\hat{u}_i(x_i-\bar{x})-\beta_0(x_i-\bar{x})-\beta_1x_i(x_i-\bar{x})))$
simplify further
$-2(\hat{\beta}_1-\beta_1)((\hat{\beta}_0\sum(x_i-\bar{x})+ \hat{\beta}_1 \sum x_i(x_i-\bar{x})+\sum\hat{u}_i(x_i-\bar{x})-\beta_0\sum(x_i-\bar{x})-\beta_1\sum x_i(x_i-\bar{x})))$
$\sum(x_i-\bar{x})$ equals zero, therefore
$-2(\hat{\beta}_1-\beta_1)(\hat{\beta}_1 \sum x_i(x_i-\bar{x})+\sum\hat{u}_i(x_i-\bar{x})-\beta_1\sum x_i(x_i-\bar{x}))$
use $\sum x_i(x_i-\bar{x}) = \sum(x_i-\bar{x})^2$
$-2(\hat{\beta}_1-\beta_1)(\hat{\beta}_1 \sum(x_i-\bar{x})^2 +\sum\hat{u}_i(x_i-\bar{x})-\beta_1\sum(x_i-\bar{x})^2))$
factorize $\sum(x_i-\bar{x})^2$
$-2(\hat{\beta}_1-\beta_1)((\hat{\beta}_1-\beta_1)\sum(x_i-\bar{x})^2 +\sum\hat{u}_i(x_i-\bar{x}))$
How do I get rid now of the last term?