0

I'm running the following regression on panel data:

$ %Translator MathMagic Pro for InDesign Mac v9.14, LaTeX converter, 2016.9.11 22:27 \begin{array}{l} {{\mathrm{tscorek}}_{\mathrm{i}}\mathrm{{=}}{\mathrm{\beta}}_{0}\mathrm{{+}}{\mathrm{\beta}}_{1}{\mathrm{sck}}_{\mathrm{i}}\mathrm{{+}}{\mathrm{\beta}}_{2}{\mathrm{boy}}_{\mathrm{i}}\mathrm{{+}}{\mathrm{\beta}}_{3}{\mathrm{freelunk}}_{\mathrm{i}}\mathrm{{+}}{\mathrm{\beta}}_{4}{\mathrm{totexpk}}_{\mathrm{i}}}\\ {\hspace{1em}\hspace{1em}\hspace{1em}\hspace{1em}\hspace{1em}\hspace{1em}\>\>\mathrm{{+}}{\mathrm{\beta}}_{5}\left({{\mathrm{boy}}_{\mathrm{i}}\mathrm{\cdot}{\mathrm{sck}}_{\mathrm{i}}}\right)\mathrm{{+}}{\mathrm{\beta}}_{6}\left({{\mathrm{freelunk}}_{\mathrm{i}}\mathrm{\cdot}{\mathrm{sck}}_{\mathrm{i}}}\right)\mathrm{{+}}{\mathrm{\beta}}_{7}\left({{\mathrm{totexpk}}_{\mathrm{i}}\mathrm{\cdot}{\mathrm{sck}}_{\mathrm{i}}}\right)\mathrm{{+}}{\mathrm{\varepsilon}}_{\mathrm{i}}} \end{array} %MathMagic MMF.7h]a5`00]EQ]Km|f4?h5n*on:0):`N);B?FKhkZY|LP)K3GM(?N3VkRM|M*)57M[E^*_k3N?Ae7BbK:U0)fZ*^K3)o8N?CbNZ2`WdcNcNC9(9k?YfONciFPn7ZJcNI2|mWlTZlnKfmie]^]mfVFmbOKenW7cNM];E[Nm_n81b?kI(YfTEn?PCKKkD]UOmM9[j6Go?^bfSn_7LlH7VngMWGFn6LlG=TbP`aj4?FIkGPoCLA1KJ35W4=TkOlGe:aKeTDZP;[Vnn1=ndfl]OSnIG|e6PF1a2(b4QT(8(T;?lJoGEl?9=)RO?InM;AOS=9e(;o5Y5X_Y(1T7bE)fFMgI20mkjofh3eSX^o3Q9W];9_AGKXL))nn`Rc19E[g;K;gnLk5XF6F[EGG(7A5k`jSKS2HLkKiVVgGF|(AQ|]^^KY]3X5)Y;ZVPBb]X5`_JeH8^^J1E;fPE34h[1RLUhefBlLk|jY:(]d_6fbGSGI;aE|UhZfCl]6ClY6C2BYJ(e]_menaY^_jkJHL))nn`Rc0lk9;=;]G||TXThoe]LdImbV2)6_ja9HN7g;M]h*ZEKg?K5RY_Ra1;VPOB0^fM51Zh=dAXl6e=IS;X57UPJfAXRW3(PWcd*h1]USNA1^A=CSb*QAZH720;hOfAANbMT0Ch][J?aPHb1lH1T*=T0DDdEW9m`;9AdK3253`0PdN5*I8PP=6iKf?dXUlkYf:84h4E::K()2=|)270lNWS0PPBU5(6G94Q4Ie;EgBhOoh2DPD49B20b26LoPD*iMXmH9jB(LQ038C`lPZRPm14)F7Xi341TUE39=50L]8FY4dET7UlGD0(Oej*TgTJR29aT88Y?6?bO8ZA:AD*=hDTo7Q5ed59C951PAAMI)FFX|aAI)7CA1WBSZ|TRaQY4`dR3)nC9A:ECY6;GSPY2R8b4bj0:7Q4a^fX0|EE54ggPJIIX7TEDi(ed=8YZceBM4Q4mZLVNJQ=mBcJ9J4G`V1hhNLb=;c9Tk10PYXTFCnS71dOb4*EDJ=Y*QQ3;7*Oa2*7Hj9oc4W8F5CBaY;TMZcXE14MXTW:a8H2VWlfLk225Pl03)Z*k0AP90f0B*XDMJ?U09R^8ELA2T3B481A8J5F4h6CHP^^;9j;dRQ[E*hX5HPXd:6|02YbGTiITlCEaW;]`EG7X]RjlUP2DKddP5=1G7WT9J8;0ji2VQ:Aa01)]PH8nWIb5K;(9Q1TMh2]TJabM=UI(7A5DYJZR][B24eYeLXT^3XYbgL?:eo(R804UfFe_QaN1oR)MhlG2_^KXi`KF|6Q^]ENg|ZMcME3lP_N:^`X79N?cno6eDNdBV_12be)SAakZjZ)(_Cbe|Ra)(E:UeK][;YV=JeShgHe)|C:Wo?`RZei?Y^U0A|`^bafa`Rlfk()_VlHgYUKaBnOP_Y9(^n38ggTa3Rk_g=7iM`PSSS;Dlkf99d(|fcWoO2dN;7I[[:W7)(QLK[n_=Z_LhaW`oWjO[GOk;IiScdB9cL[Ni[nN;oVWRg;Ci0N8OWa]gfflYRC4D?O9dSOQNnCY6oTnaCYNngkXV)2jF)MiY*:n2gD59RML|O_7jXJO^kDI7)O=e*gmd5C5hj[YW8lX|YaGEN)VjIb?6hZici63YAc7b07bQelM?S)HnTSC^J?D(OLXi?^^ZjLnmRPbXWh*3W96|Y9J2XW)EE)R[YbDSJETjZYW8bJbTUmX=cZg^hJ?);J137^_gGa`;JIJc_TC[V[[)H^|M|E1Nb*gU?R9=IiM3Fg1F2jbkj|kW_Yn]_N5lKlPP5cYOGR5nMWFh]gBH0:C:IYP(4FKfO_;hJ;|C?NS4O3dBS04M?I^m7=d8g1?c2=I]=d?4ga3d`9U_onmnG5kf7a3cilGhj2oN?];[?[]Tc]5S_V|)To?blGMUOY__daL=ZCiIi2Vbi?*(mAl7SK7OL5|o5l]XnkYilaVlQWnfBcnOk[mZL*U6i:k=GH:L(?`GjgGgmk)3ekcATS?Anj;)cK|Mmm1jQnG|9E8EOk1[(_j2?FUfQ|Cd[mUbc^lo;6RVe_EYjGLH]J^KehaOhoP[Z=h8n]_hd|8oT3_1E[8Nj6?M^RlAme1Fdf.mmf $

Where every variable is a dummy except for the dependant variable and totexpk. I'm having trouble with interpreting the coefficients of this regression; the way I see it, it's very complicated to put them into words:

$ %Translator MathMagic Pro for InDesign Mac v9.14, AMS LaTeX converter, 2016.9.11 22:30 \begin{gathered} {{\mathbb{E}}\left({{{\mathrm{tscorek}}_{\mathrm{i}}}\vert{{\mathrm{sck}}_{\mathrm{i}}\mathrm{{=}}{1}\>{\mathrm{,}}\>{\mathrm{boy}}_{\mathrm{i}}\mathrm{{=}}{1}\>{\mathrm{,}}\>{\mathrm{freelunk}}_{\mathrm{i}}\mathrm{{=}}{1}\>{\mathrm{,}}\>{\mathrm{totexpk}}_{\mathrm{i}}}}\right)\hspace{1em}\mathrm{{=}}\hspace{1em}\left({{\mathrm{\beta}}_{0}\mathrm{{+}}{\mathrm{\beta}}_{1}\mathrm{{+}}{\mathrm{\beta}}_{2}\mathrm{{+}}{\mathrm{\beta}}_{3}\mathrm{{+}}{\mathrm{\beta}}_{5}\mathrm{{+}}{\mathrm{\beta}}_{6}}\right)\mathrm{{+}}\left({{\mathrm{\beta}}_{4}\mathrm{{+}}{\mathrm{\beta}}_{7}}\right){\mathrm{totexpk}}_{\mathrm{i}}} \hfill\\ {{\mathbb{E}}\left({{{\mathrm{tscorek}}_{\mathrm{i}}}\vert{{\mathrm{sck}}_{\mathrm{i}}\mathrm{{=}}{1}\>{\mathrm{,}}\>{\mathrm{boy}}_{\mathrm{i}}\mathrm{{=}}{1}\>{\mathrm{,}}\>{\mathrm{freelunk}}_{\mathrm{i}}\mathrm{{=}}{0}\>{\mathrm{,}}\>{\mathrm{totexpk}}_{\mathrm{i}}}}\right)\hspace{1em}\mathrm{{=}}\hspace{1em}\left({{\mathrm{\beta}}_{0}\mathrm{{+}}{\mathrm{\beta}}_{1}\mathrm{{+}}{\mathrm{\beta}}_{2}\mathrm{{+}}{\mathrm{\beta}}_{5}}\right)\mathrm{{+}}\left({{\mathrm{\beta}}_{4}\mathrm{{+}}{\mathrm{\beta}}_{7}}\right){\mathrm{totexpk}}_{\mathrm{i}}} \hfill\\ {{\mathbb{E}}\left({{{\mathrm{tscorek}}_{\mathrm{i}}}\vert{{\mathrm{sck}}_{\mathrm{i}}\mathrm{{=}}{1}\>{\mathrm{,}}\>{\mathrm{boy}}_{\mathrm{i}}\mathrm{{=}}{0}\>{\mathrm{,}}\>{\mathrm{freelunk}}_{\mathrm{i}}\mathrm{{=}}{1}\>{\mathrm{,}}\>{\mathrm{totexpk}}_{\mathrm{i}}}}\right)\hspace{1em}\mathrm{{=}}\hspace{1em}\left({{\mathrm{\beta}}_{0}\mathrm{{+}}{\mathrm{\beta}}_{1}\mathrm{{+}}{\mathrm{\beta}}_{3}\mathrm{{+}}{\mathrm{\beta}}_{6}}\right)\mathrm{{+}}\left({{\mathrm{\beta}}_{4}\mathrm{{+}}{\mathrm{\beta}}_{7}}\right){\mathrm{totexpk}}_{\mathrm{i}}} \hfill \end{gathered} %MathMagic MMF.7h]G7*00kEQAKm|f4?h5n*mnU075h96D:?G=LMgDF6*7]YY^V?^P9ViW=;D3aMfJ5OT;nlgSTIAd|R`[Fihf90Y|O[`kg_7SlDQi)IVnVLfCHCZICDmnW2a7lo4`WLfm9=_mUVBOemNmbgcKnkC=Ni?=jmGmn_)VUfCG_MoS0LSnbC:MY1MSkdfnoE[9GoGBBnSUOme]=oN[ne?61n_=cHeF_Q[?5mZ=Yo`Nn3fVNeh?dk4GJjPaIa3ZCoi:|5N0`]7L2lji)_|2_jRg6[nOC2mV8dl6h4?4OF0Ald4:YDGSWbl_QY)Yecmi?3UI;|IY)YVNhg*FRnT`6G_9*kk)K[B;^igF_]mic7MM);_9CTOS^lO:XD?))nC2Ci:|Mij_EUlFRhID7YD67F)7A=h*ZV?2b1m]_nG[EMj*a7jbgFCGCA?XI:Z;:^SR2XjC1LOIPRjjh2QOL9*`J6L(FRWSGICac^cZXX`OYh`OYhagDLJ?D|J?D|KK:N)]U0U=FC9JKGKOlXOYjXnV73[T_4(^O7noBcJkPVJGIR8IkjjK8jXf*GA*l:L^)McW[Zd[V1nh]ZiT_PQ|FnPfB0NT1|XY1BSPCQ2R`;DE6BU2YM21F8)XL:L;YFn]kca|(m_4((0f)M70:891I0568I`nAQ4k9*`2G5_YZK61]20b*5R0DD3QSIFagV7IZ(;*a1Aa03X?2h4TCP2mLmM6kdFo(TZ5RB615BRVTG56X^4T08jcS`|PR5=)8n01(*WYF:X:Qk_i5i0b86P00PPM`_1O056^gAgV:K712(A024N_83`8AIPC4Adl9T2bbT*B3R*WKD7JU05YoJ|2X__C8SQYdd0DRH(QA8EVC)HG(38TW^JUFX11)?^0[T(P(DD61*[X8PMV:LXLaBQLVP*AJLMETXF(]0T78KYgbA::RZO*N2nD0PY2(Q8^P2SR22)cX`XDEehDg*N:IX7RUDm5eT19`jab::0V8MVOR^BQRZZi:9)4SPRl=OW2SAEAmi5=`P89:Y9ToJ;0Q)(LAF4EJ:AX*T*ATM1m49(LS0Wo(BL^He5A6d^Bfg50Q`ZYRB8Y4dLDd?cCVH(E]9P0(:Q3|Q)0TC*09RT8Z1X]1l1D3IV:D02BQP2(4PVeVPRL55|`IO5DU49IZg90*h6*0^G;2R0SYnF*=DY(KBcG7Tae;8Z]:HlU4=FQ0I`BH|XS;a5M630E(RXAB*cPI6^0X:NCZI1U=X4P^`=dSFBEX|W)8T9C96G9ZZP]SE0d[5ZI15(WIGWf|?9PAPC4^Bb[mOW`d|(cgTc?5o[K8Q|KB|6P^U*oC|Z=c=A3lPe):[*EfUUknaVInXQBZBGhX(B`HK6C1]EEQSi)6YXXfZ9BYE*IZJY9Xj)flG4f)|RblmaoHRfNcfJYa`I(;h_N(*8omEd7ca^6Wlb|h]M?G_dVJO_P*1ni(Li^KlaEf*[40FGIYZa_d|T`ckM)3fn;In]=USmHS9O4jNYc]U]IS7O3nNXffjfg6m^S[lC9EJI_dam_Ema5bn`=dR4(O_amUfL)Lf8aM7f2m9fi?TWjAZh_87f_GEmhR31eZ3=ZH`7OQIX4|cIeO?nQ[)7[CXdflgY3NC(_=7GRN=1TSXND)JkZc?6XbAb?VlbIUi4mi|`;b1icNblM[_=*nXSFo1718OF`EEgEVC(_6i*i4Nla9eV3)*U=iRBWc4UAIdk:9W(bJ38W`bIcD^daUmgZGH=GG9dPTOWG:PkX=S=]Pl`]=l][jQ:kCE703^Td9*jRUDLGLed0Y]_lJgKKBeOOMjh`fPL6c9CF|in(WVh]gRDN(S2IYQhjFkbM_ClK;|I6N3DN3DLS3bfV|gNSZj6a`AnHA[=Y)YjVn0=CP^Foof=imZ]Oo(677l|A*Wc[e7lO_75oZF^G;|d=_AC[m05cKgMo_Lge|V|=20lY[?^?Sho=k__[3Y_U*VmTeEoRa9H;;;WHG_X4O=`n?7^(CcYYKkm]WQd(FRTdTY[7gGJgnWkG?VI=fA9dYJ];ggb;__j*oDLL)^`GWReXFIf5_QngCh3I2*PEmC|dhLVJo(VJh|VJ`I(e*dMIAIFenUOdb2NkEO]^WkgZ;k_aNK^A_Nc6OkHKPiNMlioN)Fd9og:)DLfWkibWWdkoUc?WDMl(o`IYR]*7.mmf $ $ %Translator MathMagic Pro for InDesign Mac v9.14, AMS LaTeX converter, 2016.9.11 22:31 \begin{gathered} {{\mathbb{E}}\left({{{\mathrm{tscorek}}_{\mathrm{i}}}\vert{{\mathrm{sck}}_{\mathrm{i}}\mathrm{{=}}{1}\>{\mathrm{,}}\>{\mathrm{boy}}_{\mathrm{i}}\mathrm{{=}}{0}\>{\mathrm{,}}\>{\mathrm{freelunk}}_{\mathrm{i}}\mathrm{{=}}{0}\>{\mathrm{,}}\>{\mathrm{totexpk}}_{\mathrm{i}}}}\right)\hspace{1em}\mathrm{{=}}\hspace{1em}\left({{\mathrm{\beta}}_{0}\mathrm{{+}}{\mathrm{\beta}}_{1}}\right)\mathrm{{+}}\left({{\mathrm{\beta}}_{4}\mathrm{{+}}{\mathrm{\beta}}_{7}}\right){\mathrm{totexpk}}_{\mathrm{i}}} \hfill\\ {{\mathbb{E}}\left({{{\mathrm{tscorek}}_{\mathrm{i}}}\vert{{\mathrm{sck}}_{\mathrm{i}}\mathrm{{=}}{0}\>{\mathrm{,}}\>{\mathrm{boy}}_{\mathrm{i}}\mathrm{{=}}{1}\>{\mathrm{,}}\>{\mathrm{freelunk}}_{\mathrm{i}}\mathrm{{=}}{1}\>{\mathrm{,}}\>{\mathrm{totexpk}}_{\mathrm{i}}}}\right)\hspace{1em}\mathrm{{=}}\hspace{1em}{\mathrm{\beta}}_{0}\mathrm{{+}}{\mathrm{\beta}}_{2}\mathrm{{+}}{\mathrm{\beta}}_{3}\mathrm{{+}}{\mathrm{\beta}}_{4}{\mathrm{totexpk}}_{\mathrm{i}}} \hfill\\ {{\mathbb{E}}\left({{{\mathrm{tscorek}}_{\mathrm{i}}}\vert{{\mathrm{sck}}_{\mathrm{i}}\mathrm{{=}}{0}\>{\mathrm{,}}\>{\mathrm{boy}}_{\mathrm{i}}\mathrm{{=}}{1}\>{\mathrm{,}}\>{\mathrm{freelunk}}_{\mathrm{i}}\mathrm{{=}}{0}\>{\mathrm{,}}\>{\mathrm{totexpk}}_{\mathrm{i}}}}\right)\hspace{1em}\mathrm{{=}}\hspace{1em}{\mathrm{\beta}}_{0}\mathrm{{+}}{\mathrm{\beta}}_{2}\mathrm{{+}}{\mathrm{\beta}}_{4}{\mathrm{totexpk}}_{\mathrm{i}}} \hfill\\ {{\mathbb{E}}\left({{{\mathrm{tscorek}}_{\mathrm{i}}}\vert{{\mathrm{sck}}_{\mathrm{i}}\mathrm{{=}}{0}\>{\mathrm{,}}\>{\mathrm{boy}}_{\mathrm{i}}\mathrm{{=}}{0}\>{\mathrm{,}}\>{\mathrm{freelunk}}_{\mathrm{i}}\mathrm{{=}}{1}\>{\mathrm{,}}\>{\mathrm{totexpk}}_{\mathrm{i}}}}\right)\hspace{1em}\mathrm{{=}}\hspace{1em}{\mathrm{\beta}}_{0}\mathrm{{+}}{\mathrm{\beta}}_{3}\mathrm{{+}}{\mathrm{\beta}}_{4}{\mathrm{totexpk}}_{\mathrm{i}}} \hfill\\ {{\mathbb{E}}\left({{{\mathrm{tscorek}}_{\mathrm{i}}}\vert{{\mathrm{sck}}_{\mathrm{i}}\mathrm{{=}}{0}\>{\mathrm{,}}\>{\mathrm{boy}}_{\mathrm{i}}\mathrm{{=}}{0}\>{\mathrm{,}}\>{\mathrm{freelunk}}_{\mathrm{i}}\mathrm{{=}}{0}\>{\mathrm{,}}\>{\mathrm{totexpk}}_{\mathrm{i}}}}\right)\hspace{1em}\mathrm{{=}}\hspace{1em}{\mathrm{\beta}}_{0}\mathrm{{+}}{\mathrm{\beta}}_{4}{\mathrm{totexpk}}_{\mathrm{i}}} \hfill \end{gathered} %MathMagic MMF.7h|C8000kESQK]|f47j2_8=obX1Rl4Q:Y?[?LMgDF6*7|IY^V?]3CMc)F6X7R[|e:o8:NnKa:4XjFIJEKTFk5Xd2VmoMTGOlN3bAGTbVcfHGlC2Ic:I77hlFXh_a(9UMN76joBe)gjj^N^OIY_MVToDVjjO;^mGKMBm)[gYoA0)*oJ=5(TW)a]jcK?)^dSoY9NO*bojngJc_UWO7S0mFjn][Hg`i_YPK=ikbNn3gV94l7BIS;c;*H(hP=9olRH0W;)aS:5i`b]G9ko2;NVk`blWdK3KbI00nJ)h3dl`7:IAASGln?a])YUkoj)7XJ34O9lUTNX[CVLnW`gS|aOOI:[df;Vjga_Y^jc7ORG1fTjf9aWM?[XL)?No*2cn)dmiY]Ucn?Ylg]?:P=^PH)bCjQU8MDVYo]7VO[III*a?ilFJMGSFk*2MCGEA15eM`V2`hc1Idd*D7nH:3Q44kHm1:6NnRS7MVEaMUo31Uo31U_8|bOY0bOY0bgThIKjE(6([RdG:mOIoMCiMo=_G*XNLMN^7k^b;I50E=TF4R7Vn_VR)Z=XGNZoS;U1c^LmLf5L`?G=]D(Ul4NE^H=TP7Y07:6*FXh4hAX|:e5AU9Xe7X*6B0;]bI*^WW_FlmK;)lRF50g^C40Z(81SX768E`mQQ5i8``271]IJK61S87fP:A0h`22Vn|S?DFbdHEQR6VR0?*NEPX9742j9fk=WX_i(XJ5Ed|2Ja04Hf((a8=9`5`W7eD046LLQX13dRGT8jUZW2hVgl1:*)21R20d24|o`D*iM[MHYjB?QR160SQj1F41j48Ld;C`B(29:^jB(:1i:*]B9|b87?oZX3Xo[P8C^IY88[4`A1dHAVAn*F(38U_lm8|`21Loh2^*b0aA*H52^PR1gHYbQc5:5bJ19ZdXb[9*TKJQ8(*gK]T2DG5DfRm5dH11B4I2AM05764f^jX0TFE5dGgPJ9IX7SUDi4eD=8bZa`:J9N*k4m5lU3YJRk:9Z4S0Tm=_W1SJNYNidUH845ETZbO3V`hcY4)Zd2eXPVQ=M7*OA2A78`8oa4W;R=ADA]9T]]A*8L:JAM5DRKB5=3l(iV35KBH032X*k8CP94d02HY2:PI;*O0E0gIRU00TXH0S189]IX8W1AK|6GaF9A:FJ]b*4)1T0;Ub`XP8lOUT3E:K6d|eai|MBb:[Bf?9A3EB`(h9LBFAehR^S1P:j*^4DT(h6A[P:1_9e|Qbf`2*GH7V1[9:T)KWDF4]TS:TUEAFaZQJ5Re(PVfC|[bgL?:5c(R8(iUFJe?QnLN_^?]m7aQ_W)DahIJ|:R^=HoCLZ^cmI1lPm(:d`_kiOgcCfg[8fZUdN236|]6SYdfZ8hbm77Jd4KA5YDZ]LYZEDf[3oJ=3[?A*EHncmdW(^Z;fBcaf82IIC4kA^2W)N_PnhKQ9k)[n)j=Ecm9iS;H8b(Wa]W=]CdZi`ZaaeRf6I^CM3c(|Xfc`m?RbFZMI_LiaT?RM?TfgBicS6O3RnE=^Ue]e[W478WSbmBLYUoO;;V;U^DWB8L`n?67KIHjc4V?XI(98S]a(TUT8bL;R)bYThGk25?kQ;Z=1K`;=*UVKNIhoj6|hGFWAY^mgU3Nk8FVCQ`?V|caT3;7EIdi[Y_(lJS9W;f(k31W;b0kc)eL)Ya`GoZ8e_`A`Ckc|=ELeIVcU`g:W8QfV9)|`Ib49W)BDnJTZ3(WII(i6CBITf6C)JUfV4]_c:k18ji946goSHT3Y|e|fb9kbTfcV[U4|Bd::93)D^8PaWQdMV4:`7BC_D]_N|Wb`mHEa_b10K)UmN*WJfMJlaNaQ`a(YXV7c^K?Ibm?Q_)aEEj)Al?Ab((NdmV;dNG*m|4OV4JcJC:N9_P3DhcU_omaLO:[Goc1Zhn;4D:lMIZoEmjh_c2ebiCVQUf2MGY?MfmkMkG9c;8K2`Sg6Jcj3`l?CO7MEDNOaMa|I=EOh(*FLbbif5kh1;cNg3mf3=HfaQ^C]3O_ehl)YVdPk:F`Tc*lKSOKiHOKmS5[aSU1UjJjm)fgj9|?fGo0XL=nhCT7;J|c=nOSmPV`O092jGj79KQ*ZQ3bG_o:[GbdFkG[mSncn*eVNF^6OT:F]njDClgb]X6nC9Io[WCVSkHDSkJdFOdS?kmbOWkM:_cUlo=7e_dOg_gOAeGlDN^n[Jck?V[MIlVU1g)[n*LABXSj.mmf $

Is there some interpretation-friendly way to interpret the coefficients that I'm missing here?

EBassal
  • 123
  • 4
  • Thank you for fixing the typo. Now that the model is clearer, are you asking about how to interpret an interaction? If not, then what do you perceive to be the complication in using three interactions in a model? Is it because they all have one variable (sck) in common? – whuber Sep 12 '16 at 16:51
  • I guess I'm asking how to interpret an interaction; it is reasonably clear to me in simpler cases, but here I'm struggling to find a comprehensible interpretation of, say, ${\mathrm{\beta}}_{6}$. – EBassal Sep 12 '16 at 16:54
  • You can find plenty of material here about interpreting interactions: please [search our site](http://stats.stackexchange.com/search?q=interpret+interaction). http://stats.stackexchange.com/questions/56784 looks like it might answer your question. – whuber Sep 12 '16 at 17:01
  • I searched the site before asking the question, and I searched in a couple of textbooks, too, and I wasn't able to come up with a simple interpretation. But it seems there isn't any... – EBassal Sep 12 '16 at 17:06
  • Could you elaborate on how the referenced answers might not be "simple"? – whuber Sep 12 '16 at 17:09
  • If you interpret here one of these coefficients, I will know if what I found earlier is the simple explanation or not. – EBassal Sep 12 '16 at 17:28

0 Answers0