I am attempting to do an ordered logistic regression in R on SNP matrixes (presence absence matrix 1 or 0) with three outcomes (1,2,3). I am having an issue of 0 p-values when low numbers (<5%) occur for one the binary categories (one row of the contingency table) but this is not always the case as sometimes that p values are >0.9 as expected. I have 30 individuals in each of the first two categories and 32 in category tree (92 in total).
My statistical knowledge is very limited.
Here is the R code I am using, I do post correction on the p-values using benjamini-hochberg correction.
# Do regression
#outcome is a Factor w/ 3 levels "1","2","3"
#snp_current is a binary variable
m = polr(outcome ~ snp_current, Hess=T, method="logistic")
# calc P-values
ctable = coef(summary(m))
p = pnorm(abs(ctable[, "t value"]), lower.tail = FALSE) * 2
ctable = cbind(ctable, "p value" = p)
snp_add_p = ctable["snp_current", "p value"]
snp_p[i,"p_val"] <- snp_add_p
Here is a sample out the outputs with a pvalue of 0 (not sure how to format this correctly)
p_val Odds_ratio CI95 Minor_allele_freq_total p_val.adj_test Minor_allele_freq_group1 Minor_allele_freq_group2 Minor_allele_freq_group3 0.973822506 0.049500759 (-3.3,3.4) 0.01 0.973836581 0 1 0 0.550286527 -0.585041655 (-2.69,1.35) 0.03 0.779030597 0 2 1 0.973822506 0.049500759 (-3.3,3.4) 0.01 0.973836581 0 1 0 0.550286527 -0.585041655 (-2.69,1.35) 0.03 0.779030597 0 2 1 0.277940517 -0.999960705 (-3.05,0.75) 0.04 0.559890839 0 2 2 0 16.32590682 (NA,NA) 0.01 0 1 0 0 0.973822506 0.049500759 (-3.3,3.4) 0.01 0.973836581 0 1 0 0 -14.85639268 (NA,NA) 0.01 0 0 0 1 0 17.36099841 (NA,NA) 0.02 0 2 0 0 0.973822506 0.049500759 (-3.3,3.4) 0.01 0.973836581 0 1 0 0 -15.87292124 (NA,NA) 0.02 0 0 0 2 0 16.32590683 (NA,NA) 0.01 0 1 0 0 0 -14.85639268 (NA,NA) 0.01 0 0 0 1 0 -14.85639269 (NA,NA) 0.01 0 0 0 1 0 -14.85639267 (NA,NA) 0.01 0 0 0 1