4

If $X\sim P(2)$ and $Y \sim P(3)$ using the moment generating function, what kind of distribution has random variable $Z=X+2Y$.

So far as I know :

$$ M_X(t)=e^{-\lambda(1-e^t)}=e^{-2(1-e^t)} $$ $$ M_Y(t)=e^{-\lambda(1-e^t)}=e^{-3(1-e^t)} $$ $$ M_{2Y}(t)=e^{-\lambda(1-e^t)}=e^{-3(1-e^{2t})} $$ $$ M_{X+Y}(t)=e^{-5(1-e^t)} $$

Since

$$ X+Y \sim P(\lambda_1+\lambda_2) $$

so I am guessing that $$ Z=X+2Y \sim P(\lambda_1+2\lambda_2)$$ but I can find it from the equation

$$M_{X+2Y}(t)=e^{-2(1-e^t)} e^{-3(1-e^{2t})}=e^{(-2(1-e^t)-3(1-e^{2t})}$$

I don't know how to rearrange this equation to get the distribution. How to get rid of "$2t$".

kjetil b halvorsen
  • 63,378
  • 26
  • 142
  • 467
Cherryl
  • 75
  • 7
  • 5
    Your guess is incorrect, unfortunately. $2Y$ is not distributed as Poisson. – Glen_b Aug 24 '16 at 11:11
  • @Tim Yes,i know, I had written in my question. I also edited. But my question is about Z=X+2Y since it doesn't have Poisson ~ (λ1+2λ2). I wrote the MGF for Z but i can't see it the answer from there. – Cherryl Aug 24 '16 at 11:26
  • @Glen_b That's why i asked here, that was the simplest thing I could conclude as my answer. I wrote the MGF of the variable Z=X+2Y but from there i don't know how to rearrange to get MGF of some known distribution – Cherryl Aug 24 '16 at 11:30
  • @Cherryl I made few improvements in the formatting - please check if there is no mistakes. – Tim Aug 24 '16 at 11:42
  • 2
    The easy way to see that Z can't be Poisson is to compute the mean and variance. If it were, the mean and variance would be the same. Out of curiosity, what makes you certain that Z has a distribution that you know a name for? – Glen_b Aug 24 '16 at 12:57
  • @Glen_b Since i calculated the MGF of Z=X+2Y how can i use it get the distribution ? Obviously is not one from the familiar distributions. – Cherryl Aug 24 '16 at 15:51
  • Notionally, you can invert the transformation (though I don't know whether you'll necessarily end up with any nice closed-form). Have you seen Laplace transforms? The MGF is a Laplace transform (up to a sign flip of the argument), and you can apply the inverse Laplace transform (keeping the sign flip again) to get back to the original probability function. Alternatively you might try to use pgfs or even discrete convolution – Glen_b Aug 24 '16 at 22:09

2 Answers2

4

No, your $Z=X+2Y$ will not have a poisson distribution (you should expect it to have to small point probabilities at odd integers, and too high at even, compared to Poisson).

You didn't really say that $X$ and $Y$ are independent, but I will assume so much. EDIT: I found that this distribution is known as the Hermite distribution.

For this problem it will be convenient to use pgf's (probability generating function). The pgf for a Poisson variable with parameter $\lambda$ is $\DeclareMathOperator{\E}{\mathbb{E}}G(z)=\E z^X=e^{\lambda (z-1)}$. Then we calculate the pgf of $Z$ as $$ G_Z(z)= \E e^{X+2Y} = \E z^X \cdot \E e^{2Y}=G_X(z)G_Y(z^2) $$ and inserting the parameter values 2 for $X$, 3 for $Y$ we get $$ G_Z(z)=\exp\left\{ 2(z-1)+3(z^2-1) \right\} $$ which certainly is not the pgf of any Poisson random variable.

We can find the probability mass function by expanding the pgf in a power series. I will use maple:

G := z -> exp( 2*(z-1) + 3*(z^2-1) )
                              /             2\
                 G := z -> exp\2 z - 5 + 3 z /
S1 := series(G(z), z=0, 100) :
S2 :=  sort( convert(S1,polynom) ) :
ps := map(i -> coeff(S2,z,i), [seq(i,i=0..99)]) :
add(ps)
1230201581592231835090021705882732508724506091485915653564875278\

  48000526534413904564309823833442956185744700756387658829897786\

  002504758907395407/8289033054959573892412837535227749840302277\

  58541379236843775436718019022859048977460196496524216398837958\

  212205265551360000000000000000000000 exp(-5)
evalf(%)
                          1.000000000
evalf(ps)
[                                                             
[0.006737946999, 0.01347589400, 0.03368973500, 0.04941161132, 

  0.07524040818, 0.08939009688, 0.1050371071, 0.1066306851, 

  0.1054355016, 0.09451723482, 0.08216474795, 0.06649390044, 

  0.05216469070, 0.03871482954, 0.02788698595, 0.01920419661, 

  0.01285814431, 0.008290674603, 0.005207234170, 0.003166237682, 

  0.001878794019, 0.001083572101, 0.0006109049235, 

  0.0003357931503, 0.0001807089934, 0.00009504707551, 

  0.00004901338891, 0.00002475219374, 0.00001227088289, 

  0.000005967411318, 0.000002852003999, 0.000001338983094, 

                -7                -7                -7  
  6.184371932 10  , 2.809325136 10  , 1.256614172 10  , 

                -8                -8                -8  
  5.534051189 10  , 2.401804243 10  , 1.027240962 10  , 

                -9                -9                -10  
  4.332975626 10  , 1.802574590 10  , 7.400750733 10   , 

                -10                -10                -11  
  2.998926265 10   , 1.200056117 10   , 4.742713913 10   , 

                -11                -12                -12  
  1.852018065 10   , 7.146737691 10   , 2.726403463 10   , 

                -12                -13                -13  
  1.028366661 10   , 3.836490437 10   , 1.415815929 10   , 

                -14                -14                -15  
  5.170114897 10   , 1.868415403 10   , 6.684138498 10   , 

                -15                -16                -16  
  2.367418890 10   , 8.303642362 10   , 2.884589421 10   , 

                -17                -17                -17  
  9.926970182 10   , 3.384724660 10   , 1.143642594 10   , 

                -18                -18                -19  
  3.829768330 10   , 1.271301538 10   , 4.183805419 10   , 

                -19                -20                -20  
  1.365253276 10   , 4.417990328 10   , 1.417987144 10   , 

                -21                -21                -22  
  4.514448654 10   , 1.425880696 10   , 4.468425869 10   , 

                -22                -23                -23  
  1.389554316 10   , 4.288357079 10   , 1.313571045 10   , 

                -24                -24                -25  
  3.993983741 10   , 1.205586530 10   , 3.613024042 10   , 

                -25                -26                -27  
  1.075151891 10   , 3.177126405 10   , 9.324127135 10   , 

                -27                -28                -28  
  2.717868033 10   , 7.869294731 10   , 2.263426221 10   , 

                -29                -29                -30  
  6.467827602 10   , 1.836311462 10   , 5.180437626 10   , 

                -30                -31                -31  
  1.452283891 10   , 4.046094469 10   , 1.120343793 10   , 

                -32                -33                -33  
  3.083401674 10   , 8.435336890 10   , 2.294031526 10   , 

                -34                -34                -35  
  6.202256673 10   , 1.667182276 10   , 4.455813691 10   , 

                -35                -36                -37  
  1.184158304 10   , 3.129376210 10   , 8.224281987 10   , 

                -37                -38                -38  
  2.149590912 10   , 5.588007681 10   , 1.444860516 10   , 

                -39                -40]
  3.716098685 10   , 9.507457408 10   ]     
kjetil b halvorsen
  • 63,378
  • 26
  • 142
  • 467
2

Taking the characteristic functions of the underlying random variables you have:

$$\begin{equation} \begin{aligned} \varphi_X(t) &= \exp \Big( 2 (e^{it}-1) \Big), \\[6pt] \varphi_{2Y}(t) &= \exp \Big( 3 (e^{2it}-1) \Big). \\[6pt] \end{aligned} \end{equation}$$

Assuming that $X$ and $Y$ are independent, you then have:

$$\varphi_Z(t) = \varphi_{X}(t) \cdot \varphi_{2Y}(t) = \exp \Big( 3 e^{2it} +2 e^{it} -5 \Big).$$

The distribution of $Z$ can be obtained by inverting the characteristic function via standard methods for inverse-Fourier transformation. Using a well-known inversion formula we have:

$$\begin{equation} \begin{aligned} p_Z(z) &= \lim_{T \rightarrow \infty} \frac{1}{2T} \int \limits_{-T}^{+T} e^{-itz} \varphi_Z(t) dt \\[6pt] &= \lim_{T \rightarrow \infty} \frac{1}{2T} \int \limits_{-T}^{+T} \exp \Big( 3 e^{2it} +2 e^{it} - itz -5 \Big) dt \\[6pt] \end{aligned} \end{equation}$$

This integral is hard to solve, so it is easier to proceed in this case by taking a standard convolution. Doing this yields the closed form solution:

$$\begin{equation} \begin{aligned} p_Z(z) &= \sum_{y=0}^{\lfloor z/2 \rfloor} p_Y(y) \cdot p_X(z-2y) \\[6pt] &= \exp(-5) \sum_{y=0}^{\lfloor z/2 \rfloor} \frac{3^y 2^{z-2y}}{y! (z-2y)!} \\[6pt] &= 2^z \exp(-5) \sum_{y=0}^{\lfloor z/2 \rfloor} \frac{(\tfrac{3}{4})^y}{y! (z-2y)!}. \\[6pt] \end{aligned} \end{equation}$$

You can create a function for this PMF in R as follows:

#Create probability mass function for Z
PMF <- function(z) { YY <- floor(z/2);
                     Y <- 0:YY;
                     for (i in 0:YY) { Y[i+1] <- dpois(i, 3)*dpois(z-2*i, 2); }
                     sum(Y); }

#Create data frame of PMF values from Z = 0,...,25
ZZ   <- 25;
Z    <- 0:ZZ;
Prob <- rep(0,length(ZZ));
for (z in 0:ZZ) { Prob[z+1] <- PMF(z) }
DATA <- data.frame(z = Z, Prob =  Prob)

#Plot the PMF
library(ggplot2);

FIGURE <- ggplot(data = DATA, aes(x = z, y = Prob)) +
          geom_bar(stat = 'identity', fill = 'red') +
          theme(plot.title = element_text(hjust = 0.5, face = 'bold')) + 
          ggtitle('Probability Mass Function') +
          xlab('z') + ylab('Probability');
FIGURE;

enter image description here

Ben
  • 91,027
  • 3
  • 150
  • 376