Assuming I can't make more measurements, how can I improve a linear model regression?
I have the following data:
u time(ms)
10 13.54
20 41.49
30 52.50
40 67.71
50 101.13
60 112.85
70 133.13
80 152.68
90 167.11
100 196.53
p-value: 3.718e-10
F-statistic: 1310 on 1 and 8 degrees of freedom
Multiple R-squared: 0.9939
Adjusted R-squared: 0.9932
Min: -6.7411
1Q: -2.2888
Median: -0.5126
Max: 7.0639
(Intercept): -3.9729 (estimate); 3.36107 (std. error); -1.182 (t value); 0.271 (Pr > |t|)
u: 1.96072 (estimate); 0.05417 (std. error); 36.197 (t value); 3.72e-10 (Pr > |t|)
Command in R-tool: > summary(lm(time ~ u))
I'm using linear model and R-tool gave me the equation -3,9729 + 1,96072x. Of course to x = 2 my model is not good because time cannot be negative. So how can I improve it?