If $Y$ is $\text{Poisson}(λ)$ distributed, how do we obtain this confidence interval for $λ$:
$\:l=\frac14 [(\sqrt{Y}+\sqrt{Y+1}-z_{α/2} )^2-1]$
$u=\frac14 [(\sqrt{Y}+\sqrt{Y+1}+z_{α/2} )^2-1]$
If $Y$ is $\text{Poisson}(λ)$ distributed, how do we obtain this confidence interval for $λ$:
$\:l=\frac14 [(\sqrt{Y}+\sqrt{Y+1}-z_{α/2} )^2-1]$
$u=\frac14 [(\sqrt{Y}+\sqrt{Y+1}+z_{α/2} )^2-1]$