head(jobshop)
X totalcost units goal.sd weight stamp chisel detail rush labor cost lost manager room.temp music shift mach.hrs plant breakdown rework
1 1 90751.53 423 0.1 4.48 4 7 No Yes 1.47 4.71 0.8317 Alan 74.71 None 2 1.277 Old 1 0.114
2 2 100456.65 554 1.0 4.35 2 3 Yes No 1.26 4.82 0.4951 Devon 75.37 Pop 1 1.317 New 0 0.000
3 3 128574.01 607 0.5 5.00 2 4 No No 1.20 5.32 0.5584 Beatrice 75.29 None 1 1.071 Old 0 0.101
4 4 73996.67 347 1.0 5.39 2 4 No No 1.46 5.44 0.4562 Ebrahim 75.27 Soul 1 1.375 New 0 0.000
5 5 98494.52 510 1.0 4.80 2 4 No No 1.23 4.98 0.5018 Ebrahim 75.31 Soul 1 1.455 New 0 0.000
6 6 66745.85 419 0.5 3.99 2 4 No No 1.21 4.60 0.4100 Ebrahim 75.38 Soul 1 1.065 New 0 0.000
my.fit <-lm(totalcost ~ units + goal.sd + weight + stamp + chisel + detail + rush + labor + cost + lost + manager + room.temp + music + shift + mach.hrs + plant + breakdown + rework, data=jobshop)
goalfact <- as.factor(my.fit$goal.sd)
stampfact <- as.factor(my.fit$stamp)
chiselfact <- as.factor(my.fit$chisel)
detailfact <- as.factor(my.fit$detail)
rushfact <- as.factor(my.fit$rush)
mgrfact <- as.factor(my.fit$manager)
shiftfact <- as.factor(my.fit$shift)
plntfact <- as.factor(my.fit$plant)
summary(my.fit)
Call:
lm(formula = totalcost ~ units + goal.sd + weight + stamp + chisel +
detail + rush + labor + cost + lost + manager + room.temp +
music + shift + mach.hrs + plant + breakdown + rework, data = jobshop)
Residuals:
Min 1Q Median 3Q Max
-118706 -2007 286 2766 18836
Coefficients: (5 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.065e+05 1.493e+04 -7.129 3.73e-12 ***
units 1.913e+02 2.579e+00 74.151 < 2e-16 ***
goal.sd -1.519e+03 1.208e+03 -1.257 0.20946
weight 6.554e+03 5.787e+02 11.326 < 2e-16 ***
stamp -1.412e+03 7.177e+02 -1.967 0.04972 *
chisel 1.120e+02 5.057e+02 0.221 0.82487
detailYes 6.880e+02 1.071e+03 0.643 0.52079
rushYes 8.511e+02 9.893e+02 0.860 0.39006
labor 1.112e+04 3.842e+03 2.894 0.00398 **
cost 5.920e+03 9.230e+02 6.413 3.40e-10 ***
lost 1.775e+04 6.871e+03 2.583 0.01010 *
managerBeatrice 1.751e+03 1.235e+03 1.417 0.15714
managerCarl -1.137e+04 1.678e+03 -6.774 3.67e-11 ***
managerDevon -1.164e+04 1.721e+03 -6.767 3.84e-11 ***
managerEbrahim -1.107e+04 1.679e+03 -6.597 1.11e-10 ***
room.temp 2.108e+01 1.817e+02 0.116 0.90765
musicPop NA NA NA NA
musicRock NA NA NA NA
musicSoul NA NA NA NA
shift NA NA NA NA
mach.hrs 2.683e+04 1.870e+03 14.353 < 2e-16 ***
plantOld NA NA NA NA
breakdown -3.701e+01 9.261e+02 -0.040 0.96814
rework -8.327e+03 1.121e+04 -0.743 0.45795
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 8361 on 481 degrees of freedom
Multiple R-squared: 0.93, Adjusted R-squared: 0.9274
F-statistic: 355.2 on 18 and 481 DF, p-value: < 2.2e-16
Hi, I am taking a first course in regression and was trying to fit the above model. I tried to factor or make dummy variables of a few of the predictors but somehow I am getting the Coefficients: (5 not defined because of singularities)
and NA
for music and breakdown.
Please tell me what I'm doing wrong. I am stuck!