$$L(\gamma,\mathbf{\beta}; \mathbf{\gamma}, \textbf{z}) = \sum_{i=1}^{n} \log(f(z_i|\mathbf{\gamma}))+\sum_{i=1}^{n} \log(f(y_i|z_i, \mathbf{\beta}))$$
$$= \sum_{i=1}^{n} (z_{i} \textbf{G}_i \gamma-\log(1+e^{G_{i} \gamma}))+ \sum_{i=1}^{n} (1-z_i)(y_{i} \textbf{B}_i \beta-e^{\textbf{B}_i \beta}) -\sum_{i=1}^{n}(1-z_i) \log(y_{i}!)$$
How can I calculate E and M steps under EM algorithm thoretically?