It should be possible to get away with two columns per feature.
For a categorical variable with $n$ levels, consider the two coordinates to be $n$ roots of $1$.
So your encoding will look like this:
+----------+-----------+-----------+
| Category | X | Y |
| 1 | -1.000000 | 0.000000 |
| 2 | -0.993712 | 0.111964 |
| 3 | -0.993712 | -0.111964 |
| 4 | -0.974928 | 0.222521 |
| 5 | -0.974928 | -0.222521 |
| 6 | -0.943883 | 0.330279 |
| 7 | -0.943883 | -0.330279 |
| 8 | -0.900969 | 0.433884 |
| 9 | -0.900969 | -0.433884 |
| 10 | -0.846724 | 0.532032 |
| 11 | -0.846724 | -0.532032 |
| 12 | -0.781831 | 0.623490 |
| 13 | -0.781831 | -0.623490 |
| 14 | -0.707107 | 0.707107 |
| 15 | -0.707107 | -0.707107 |
| 16 | -0.623490 | 0.781831 |
| 17 | -0.623490 | -0.781831 |
| 18 | -0.532032 | 0.846724 |
| 19 | -0.532032 | -0.846724 |
| 20 | -0.433884 | 0.900969 |
| 21 | -0.433884 | -0.900969 |
| 22 | -0.330279 | 0.943883 |
| 23 | -0.330279 | -0.943883 |
| 24 | -0.222521 | 0.974928 |
| 25 | -0.222521 | -0.974928 |
| 26 | -0.111964 | 0.993712 |
| 27 | -0.111964 | -0.993712 |
| 28 | 0.000000 | 1.000000 |
| 29 | 0.000000 | -1.000000 |
| 30 | 0.111964 | 0.993712 |
| 31 | 0.111964 | -0.993712 |
| 32 | 0.222521 | 0.974928 |
| 33 | 0.222521 | -0.974928 |
| 34 | 0.330279 | 0.943883 |
| 35 | 0.330279 | -0.943883 |
| 36 | 0.433884 | 0.900969 |
| 37 | 0.433884 | -0.900969 |
| 38 | 0.532032 | 0.846724 |
| 39 | 0.532032 | -0.846724 |
| 40 | 0.623490 | 0.781831 |
| 41 | 0.623490 | -0.781831 |
| 42 | 0.707107 | 0.707107 |
| 43 | 0.707107 | -0.707107 |
| 44 | 0.781831 | 0.623490 |
| 45 | 0.781831 | -0.623490 |
| 46 | 1.000000 | 0.000000 |
| 47 | 0.993712 | 0.111964 |
| 48 | 0.993712 | -0.111964 |
| 49 | 0.974928 | 0.222521 |
| 50 | 0.974928 | -0.222521 |
| 51 | 0.943883 | 0.330279 |
| 52 | 0.943883 | -0.330279 |
| 53 | 0.900969 | 0.433884 |
| 54 | 0.900969 | -0.433884 |
| 55 | 0.846724 | 0.532032 |
| 56 | 0.846724 | -0.532032 |
+----------+-----------+-----------+