For reasons explained in my comment, you will get identical estimates for the treatment coefficient.
Here's a numerical example of "hard" RDD using Stata. We will use a experimental dataset of 12 cars. Each car was run once without a beneficial fuel additive (condition 1) and once with (condition 2). The outcome is miles per gallon. This setup is similar to your cross-border pairs, where one member is treated, but they are otherwise similar.
. use http://www.stata-press.com/data/r14/fuel, clear
. gen diff = mpg2-mpg1
. list, clean noobs
mpg1 mpg2 diff
20 24 4
23 25 2
21 21 0
25 22 -3
18 23 5
17 18 1
18 17 -1
24 28 4
20 24 4
24 27 3
23 21 -2
19 23 4
. reg diff
Source | SS df MS Number of obs = 12
-------------+---------------------------------- F(0, 11) = 0.00
Model | 0 0 . Prob > F = .
Residual | 80.25 11 7.29545455 R-squared = 0.0000
-------------+---------------------------------- Adj R-squared = 0.0000
Total | 80.25 11 7.29545455 Root MSE = 2.701
------------------------------------------------------------------------------
diff | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
_cons | 1.75 .7797144 2.24 0.046 .0338602 3.46614
------------------------------------------------------------------------------
. gen pair_id = _n
. reshape long mpg, i(pair_id) j(treat)
(note: j = 1 2)
Data wide -> long
-----------------------------------------------------------------------------
Number of obs. 12 -> 24
Number of variables 4 -> 4
j variable (2 values) -> treat
xij variables:
mpg1 mpg2 -> mpg
-----------------------------------------------------------------------------
. reg mpg i.treat i.pair_id
Source | SS df MS Number of obs = 24
-------------+---------------------------------- F(12, 11) = 4.03
Model | 176.5 12 14.7083333 Prob > F = 0.0139
Residual | 40.125 11 3.64772727 R-squared = 0.8148
-------------+---------------------------------- Adj R-squared = 0.6127
Total | 216.625 23 9.41847826 Root MSE = 1.9099
------------------------------------------------------------------------------
mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
2.treat | 1.75 .7797144 2.24 0.046 .0338602 3.46614
|
pair_id |
2 | 2 1.909902 1.05 0.317 -2.203667 6.203667
3 | -1 1.909902 -0.52 0.611 -5.203667 3.203667
4 | 1.5 1.909902 0.79 0.449 -2.703667 5.703667
5 | -1.5 1.909902 -0.79 0.449 -5.703667 2.703667
6 | -4.5 1.909902 -2.36 0.038 -8.703667 -.2963331
7 | -4.5 1.909902 -2.36 0.038 -8.703667 -.2963331
8 | 4 1.909902 2.09 0.060 -.2036669 8.203667
9 | 1.03e-15 1.909902 0.00 1.000 -4.203667 4.203667
10 | 3.5 1.909902 1.83 0.094 -.7036669 7.703667
11 | 1.15e-15 1.909902 0.00 1.000 -4.203667 4.203667
12 | -1 1.909902 -0.52 0.611 -5.203667 3.203667
|
_cons | 21.125 1.40565 15.03 0.000 18.03118 24.21882
------------------------------------------------------------------------------
. xtreg mpg i.treat, fe
Fixed-effects (within) regression Number of obs = 24
Group variable: pair_id Number of groups = 12
R-sq: Obs per group:
within = 0.3141 min = 2
between = . avg = 2.0
overall = 0.0848 max = 2
F(1,11) = 5.04
corr(u_i, Xb) = 0.0000 Prob > F = 0.0463
------------------------------------------------------------------------------
mpg | Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------+----------------------------------------------------------------
2.treat | 1.75 .7797144 2.24 0.046 .0338602 3.46614
_cons | 21 .5513413 38.09 0.000 19.78651 22.21349
-------------+----------------------------------------------------------------
sigma_u | 2.6809513
sigma_e | 1.9099024
rho | .66334557 (fraction of variance due to u_i)
------------------------------------------------------------------------------
F test that all u_i=0: F(11, 11) = 3.94 Prob > F = 0.015
All 3 methods yield an estimated marginal improvement of 1.75 miles per gallon, with a standard error of 0.78.