If $\boldsymbol{\beta} \sim \mathcal{N}_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, can someone please help me understand why $\mathbb{E}[||\boldsymbol{\beta}||_2^2] = ||\boldsymbol{\mu}||_2^2 + \text{trace}(\boldsymbol{\Sigma})$
Further, how does this expectation change if we instead consider $\boldsymbol{\beta}^T\textbf{W}\boldsymbol{\beta}$, where $\textbf{W}$ is a diagonal matrix?
Thank you!