Given a Weighted Linear Least Squares problem where the cost function is given by:
$$ J = { \left( x - H \Theta \right) }^{T} {C}^{-1} { \left( x - H \Theta \right) } $$
There is a Sequential Solution for the cases we get a sample by sample of $ \left\{ x \left[ 0 \right], x \left[ 1 \right], \cdots x \left[ N \right] \right\} $
Namely, given $ x \left[ N + 1 \right] $ we can derive $ \hat{\Theta} \left[ N + 1 \right] $ by
$$ \hat{\Theta} \left[ N + 1 \right] = \hat{\Theta} \left[ N \right] + K \left[ N + 1 \right] \left( x \left[ N + 1 \right] - {h}^{T} \left[ n \right] \hat{\Theta} \left[ N \right] \right) $$
With the appropriate choice of $ K \left[ N + 1 \right] $ (Very similar to Kalman Filter).
The question is, can we have a sequential form to a Tikhonov Regularized Least Squares problem where the cost function is given by:
$$ J = { \left( x - H \Theta \right) }^{T} {C}^{-1} { \left( x - H \Theta \right) } + \lambda {\left \| W \Theta \right \|}^{2}_{2} $$
Is there such form?