I have tuples, $\{(X_i,Y_i)\}_{i=1}^n$, which are iid.
Suppose I introduce a new variable, $T_i = g(X_i)$, where the function $g$ is arbitrary. Is it true that $\{(T_i, Y_i)\}_{i=1}^n$ are iid as well? Is the following argument correct?
My reasoning:
for $i \neq j$:
\begin{align*} P(T_i \in A, Y_i \in B, T_j \in C, Y_j \in D) &= P(g(X_i) \in A, Y_i \in B, g(X_j) \in C, Y_j \in D) \\ &= P(X_i \in g^{-1}(A), Y_i \in B, X_j \in g^{-1}(C), Y_j \in D) \\ &= P(X_i \in g^{-1}(A), Y_i \in B) P(X_j \in g^{-1}(C), Y_j \in D) \\ \end{align*}
where $g^{-1}(A) = \{ x: g(x) \in A \}$.