Consider the likelihood function for parameter vector $\boldsymbol{\theta}=(\theta_1,\theta_2)$:$L(\boldsymbol{\theta};\boldsymbol{x},\boldsymbol{y})=L_1(\boldsymbol{\theta};\boldsymbol{x})L_2(\theta_2;\boldsymbol{y})$; where $(\boldsymbol{x},\boldsymbol{y})$ are data vectors.
Now, assume the following conditions:
- The likelihood function $L_1(\boldsymbol{\theta};\boldsymbol{x})$ is non-identifiable, i.e. there exists a function $g(.)$ such that $\max_{\boldsymbol{\theta}}L_1(\boldsymbol{\theta};\boldsymbol{x})=k$ for all $\boldsymbol{\theta}$ satisfying $g(\boldsymbol{\theta})=0$, for some constant $k$.
$\max_{\theta_1}L_1(\boldsymbol{\theta};\boldsymbol{x})$ is unique for all fixed values of $\theta_2$ in the parameter space.
$\max_{\theta_2}L_2(\theta_2;\boldsymbol{y})$ is unique, i.e. $\theta_2$ is estimable from $L_2(\theta_2;\boldsymbol{y})$ alone.
It is intuitively clear that $L(\boldsymbol{\theta};\boldsymbol{x},\boldsymbol{y})$ is identifiable because $L_2(\theta_2;\boldsymbol{y})$ is identifiable. However, how can we prove identifiability of $L(\boldsymbol{\theta};\boldsymbol{x},\boldsymbol{y})$ mathematically?