Im working on a panel data set and have difficulties to understand the odds ratio of a fixed effect logit model
. I prepared an cross sectional exapmle. I suppose the interpretation is identical:
data(cars)
attach(cars)
fit<-glm(Sound ~ Mileage+Price, family=binomial(link="logit"))
summary(fit)
Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 1.581e+00 2.811e-01 5.623 1.88e-08 ***
Mileage -1.189e-05 9.428e-06 -1.261 0.207205
Price -2.734e-05 7.564e-06 -3.614 0.000301 ***
require(MASS)
exp(cbind(coef(fit), confint(fit))) ## for odds ratios
2.5 % 97.5 %
(Intercept) 4.8578575 2.8174158 8.4927615
Mileage 0.9999881 0.9999695 1.0000065
Price 0.9999727 0.9999577 0.9999874
How can I interpret odds ratios as an increase/decrease in chance or probability?