Given some normally distributed observations $x_1,x_2,...,x_n$
$\forall i\ x_i\sim\mathcal{N}(\mu, \sigma^2)$
the ML estimator decides that the variance that maximizes the likelihood function is (see here):
$\hat{\sigma^2}=\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x}^2)$
Now, I am trying to find the variance of this estimation:
$\sigma^2_{\hat{\sigma^2}}=Var[\hat{\sigma^2}]=Var[\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x}^2)]$
If we note that: $\hat{\sigma^2}=\frac{1}{n}\sum_{i=1}^{n}(x_i^2-2x_i\bar{x}+\bar{x}^2) \\ =\frac{1}{n}\sum_{i=1}^{n}x_i^2-2\bar{x}\frac{1}{n}\sum_{i=1}^{n}x_i+\frac{1}{n}\sum_{i=1}^{n}\bar{x}^2 \\ =\frac{1}{n}\sum_{i=1}^{n}x_i^2-2\bar{x}^2+\bar{x}^2 \\ =\frac{1}{n}\sum_{i=1}^{n}x_i^2-\bar{x}^2$
we have:
$\sigma^2_{\hat{\sigma^2}}=Var[\frac{1}{n}\sum_{i=1}^{n}x_i^2-\bar{x}^2]$
but I am stuck here since I think that $x_i$ and $\bar{x}$ are not independent in order to use the property that says that the variance of the sum is the sum of the variances.