In cluster analysis I have frequently encountered a statement that the total sum of squares $\sum\limits_{i = 1}^n {{{({x_i} - \overline x )}^2}} $ being equal to within-cluster sum of squares $\sum\limits_{k = 1}^K {\sum\limits_{i = 1}^{{n_k}} {{z_{ik}}{{({x_i} - {{\overline x }_k})}^2}} } $ and between cluster sum of squares $\sum\limits_{k = 1}^K {\frac{{{n_k}}}{n}{{({{\overline x }_k} - \overline x )}^2}} $, where $n$ is the total number of elements, $K$ is the number of clusters, $n_k$ is the number of elements in the $k$th cluster, ${{{\overline x }_k}}$ is the mean of the $k$th cluster, $z_{ik}$ is an indicator function ${z_{ik}} = \left\{ {\begin{array}{*{20}{c}} 1&{{x_i} \in {\rm{cluster }}k}\\ 0&{{x_i} \notin {\rm{cluster }}k} \end{array}} \right.$. Anyone can provide a proof that the following equation indeed holds?
$\sum\limits_{i = 1}^n {{{({x_i} - \overline x )}^2}} = \sum\limits_{k = 1}^K {\sum\limits_{i = 1}^{{n_k}} {{z_{ik}}{{({x_i} - {{\overline x }_k})}^2}} } + \sum\limits_{k = 1}^K {{{{n_k}}}{{({{\overline x }_k} - \overline x )}^2}} $
Thank you!