Formula of Pearson Correlation Coefficient is :
$$r_{xy}=\frac{\sum_{i=1}^{n}(x_i-\bar x)(y_i-\bar y)}{\sqrt{\sum_{i=1}^{n}(x_i-\bar x)^2}\sqrt{\sum_{i=1}^{n}(y_i-\bar y)^2}}$$
In Time series Analysis , for lag k
, why is it not :
$$r_{k}=\frac{\sum_{t=k+1}^{n}(y_t-\bar y)(y_{t-k}-\bar y)}{\sqrt{\sum_{t=k+1}^{n}(y_t-\bar y)^2}\sqrt{\sum_{t=k+1}^{n}(y_{t-k}-\bar y)^2}}$$
?
rather the actual formula is :
$$r_{k}=\frac{\sum_{t=k+1}^{n}(y_t-\bar y)(y_{t-k}-\bar y)}{\sum_{t=1}^{n}(y_t-\bar y)^2}$$
The denominator is confusing me . Why is the denominator $\sum_{t=1}^{n}(y_t-\bar y)^2$ instead of $\sqrt{\sum_{t=k+1}^{n}(y_t-\bar y)^2}\sqrt{\sum_{t=k+1}^{n}(y_{t-k}-\bar y)^2}$