2

Suppose $ X_1,\dots, X_n$ be a random sample from $N_p(\mu, \Sigma), \Sigma > 0$. Find an unbiased estimator of $\Sigma^{-1}$.

I know the unbiased estimator of $\Sigma$ is $\dfrac{1}{n-1} \sum_{j=1}^n (X_j-\bar X)(X_j-\bar X)'$. But what about $\Sigma^{-1}$?

kjetil b halvorsen
  • 63,378
  • 26
  • 142
  • 467
A.D
  • 761
  • 1
  • 7
  • 15
  • 3
    What kind of progress have you made towards a solution? (You might want to start with the case $n=1$.) – whuber Feb 09 '15 at 20:06
  • @whuber I don't understand where to start. – A.D Feb 09 '15 at 20:10
  • A reasonable guess is the inverse of the unbiased estimator for $\Sigma$. – Lepidopterist Feb 09 '15 at 20:14
  • @GregorianFunk So I need to find $E\left[ \dfrac{n-1} {\sum_{j=1}^n (X_j-\bar X)(X_j-\bar X)'} \right]$. But how I handle $E\left[ \dfrac{1} {\sum_{j=1}^n (X_j-\bar X)(X_j-\bar X)'} \right]$ – A.D Feb 09 '15 at 20:18
  • 1
    I am not sure it is so simple. I am only offering a reasonable suggestion. Try going through the proof and show us where you break down. As @whuber said, try the case $n=1$ first. – Lepidopterist Feb 09 '15 at 20:21
  • 3
    You cannot write $$\dfrac{1} {\sum_{j=1}^n (X_j-\bar X)(X_j-\bar X)'}\,,$$ since ${\sum_{j=1}^n (X_j-\bar X)(X_j-\bar X)'}$ is a matrix!!! – Xi'an Feb 09 '15 at 22:04

1 Answers1

0

I assume $\mu$ is unknown and $n>p$. Then we know that an unbiased estimator of $\Sigma$ is

$$S=\frac1{n-1}\sum_{i=1}^n (X_i-\overline X)(X_i-\overline X)'$$

And that $(n-1)S$ has a Wishart distribution with $n-1$ degrees of freedom:

$$(n-1)S\sim W_p(n-1,\Sigma)$$

Provided $n>p+2$, the mean of $((n-1)S)^{-1}$ is known to be

$$E\left[\frac{S^{-1}}{n-1}\right]=\frac{\Sigma^{-1}}{n-p-2} \tag{$\star$}$$

So an unbiased estimator of $\Sigma^{-1}$ is

$$\widehat{\Sigma^{-1}}=\left(\frac{n-p-2}{n-1}\right)S^{-1}$$

To prove $(\star)$, we take help of the following theorem:

If $A\sim W_p(n,\Sigma)$ where $n$ is a positive integer and $n\ge p$, then for any fixed non-zero vector $a\in \mathbb R^p$, $$\frac{a'\Sigma^{-1}a}{a'A^{-1}a}\sim \chi^2_{n-p+1}$$

Using the above, we have for all $a$,

\begin{align} E\left[a'A^{-1}a\right]&=\left(a'\Sigma^{-1}a\right) E\left[\frac1{\chi^2_{n-p+1}}\right] \\&=\frac{a'\Sigma^{-1}a}{n-p-1} \quad,\quad\quad \small\text{ if }n>p+1 \end{align}

And hence,

$$E\left[A^{-1}\right]=\frac{\Sigma^{-1}}{n-p-1} \quad,\quad\quad \small\text{ if }n>p+1$$

For these results and much more on the estimation of precision matrix under normality, one can refer to Aspects of Multivariate Statistical Theory by R.J. Muirhead.

StubbornAtom
  • 8,662
  • 1
  • 21
  • 67