Such questions are always best answered by looking at the code, if you're fluent in Python.
RandomForestClassifier.predict
, at least in the current version 0.16.1, predicts the class with highest probability estimate, as given by predict_proba
. (this line)
The documentation for predict_proba
says:
The predicted class probabilities of an input sample is computed as
the mean predicted class probabilities of the trees in the forest. The
class probability of a single tree is the fraction of samples of the same
class in a leaf.
The difference from the original method is probably just so that predict
gives predictions consistent with predict_proba
. The result is sometimes called "soft voting", rather than the "hard" majority vote used in the original Breiman paper. I couldn't in quick searching find an appropriate comparison of the performance of the two methods, but they both seem fairly reasonable in this situation.
The predict
documentation is at best quite misleading; I've submitted a pull request to fix it.
If you want to do majority vote prediction instead, here's a function to do it. Call it like predict_majvote(clf, X)
rather than clf.predict(X)
. (Based on predict_proba
; only lightly tested, but I think it should work.)
from scipy.stats import mode
from sklearn.ensemble.forest import _partition_estimators, _parallel_helper
from sklearn.tree._tree import DTYPE
from sklearn.externals.joblib import Parallel, delayed
from sklearn.utils import check_array
from sklearn.utils.validation import check_is_fitted
def predict_majvote(forest, X):
"""Predict class for X.
Uses majority voting, rather than the soft voting scheme
used by RandomForestClassifier.predict.
Parameters
----------
X : array-like or sparse matrix of shape = [n_samples, n_features]
The input samples. Internally, it will be converted to
``dtype=np.float32`` and if a sparse matrix is provided
to a sparse ``csr_matrix``.
Returns
-------
y : array of shape = [n_samples] or [n_samples, n_outputs]
The predicted classes.
"""
check_is_fitted(forest, 'n_outputs_')
# Check data
X = check_array(X, dtype=DTYPE, accept_sparse="csr")
# Assign chunk of trees to jobs
n_jobs, n_trees, starts = _partition_estimators(forest.n_estimators,
forest.n_jobs)
# Parallel loop
all_preds = Parallel(n_jobs=n_jobs, verbose=forest.verbose,
backend="threading")(
delayed(_parallel_helper)(e, 'predict', X, check_input=False)
for e in forest.estimators_)
# Reduce
modes, counts = mode(all_preds, axis=0)
if forest.n_outputs_ == 1:
return forest.classes_.take(modes[0], axis=0)
else:
n_samples = all_preds[0].shape[0]
preds = np.zeros((n_samples, forest.n_outputs_),
dtype=forest.classes_.dtype)
for k in range(forest.n_outputs_):
preds[:, k] = forest.classes_[k].take(modes[:, k], axis=0)
return preds
On the dumb synthetic case I tried, predictions agreed with the predict
method every time.