It's not completely clear what the output of your code will be in this case.
The Singular Value Decomposition of a real-valued $m$ x $n$ matrix M is a
factorisation of the form
M = U D V'
where U is $m$ x $m$, D is $m$ x $n$ and V is $n$ x $n$. The diagonal entries {$d_{ii}$} of D are the "singular values" of M. If your code provides U,D and V as output, you need only multiply them as shown and check that the original matrix is reconstructed. Presumably you would not be asking if that were the case. But perhaps they are available from the library you are using?
Alternatively, you might try finding some other software that preforms SVD and match your results against that. Using R, for example, help for the function svd() (see ?svd) will provides the following example decomposing a Hilbert matrix X:
hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }
(X <- hilbert(9)[, 1:6])
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1.0000000 0.5000000 0.33333333 0.25000000 0.20000000 0.16666667
[2,] 0.5000000 0.3333333 0.25000000 0.20000000 0.16666667 0.14285714
[3,] 0.3333333 0.2500000 0.20000000 0.16666667 0.14285714 0.12500000
[4,] 0.2500000 0.2000000 0.16666667 0.14285714 0.12500000 0.11111111
[5,] 0.2000000 0.1666667 0.14285714 0.12500000 0.11111111 0.10000000
[6,] 0.1666667 0.1428571 0.12500000 0.11111111 0.10000000 0.09090909
[7,] 0.1428571 0.1250000 0.11111111 0.10000000 0.09090909 0.08333333
[8,] 0.1250000 0.1111111 0.10000000 0.09090909 0.08333333 0.07692308
[9,] 0.1111111 0.1000000 0.09090909 0.08333333 0.07692308 0.07142857
Taking the SVD provides the factors
(s <- svd(X))
$d
[1] 1.668433e+00 2.773727e-01 2.223722e-02 1.084693e-03 3.243788e-05
[6] 5.234864e-07
$u
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] -0.7244999 0.6265620 0.27350003 -0.08526902 0.02074121 -0.00402455
[2,] -0.4281556 -0.1298781 -0.64293597 0.55047428 -0.27253421 0.09281592
[3,] -0.3121985 -0.2803679 -0.33633240 -0.31418014 0.61632113 -0.44090375
[4,] -0.2478932 -0.3141885 -0.06931246 -0.44667149 0.02945426 0.53011986
[5,] -0.2063780 -0.3140734 0.10786005 -0.30241655 -0.35566839 0.23703838
[6,] -0.1771408 -0.3026808 0.22105904 -0.09041508 -0.38878613 -0.26044927
[7,] -0.1553452 -0.2877310 0.29280775 0.11551327 -0.19285565 -0.42094482
[8,] -0.1384280 -0.2721599 0.33783778 0.29312535 0.11633231 -0.16079025
[9,] -0.1248940 -0.2571250 0.36542543 0.43884649 0.46496714 0.43459954
$v
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] -0.7364928 0.6225002 0.2550021 -0.06976287 0.01328234 -0.001588146
[2,] -0.4432826 -0.1818705 -0.6866860 0.50860089 -0.19626669 0.041116974
[3,] -0.3274789 -0.3508553 -0.2611139 -0.50473697 0.61605641 -0.259215626
[4,] -0.2626469 -0.3921783 0.1043599 -0.43747940 -0.40833605 0.638901622
[5,] -0.2204199 -0.3945644 0.3509658 0.01612426 -0.46427916 -0.675826789
[6,] -0.1904420 -0.3831871 0.5110654 0.53856351 0.44663632 0.257248908
so that the diagonal matrix D
(D <- diag(s$d))
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1.668433 0.0000000 0.00000000 0.000000000 0.000000e+00 0.000000e+00
[2,] 0.000000 0.2773727 0.00000000 0.000000000 0.000000e+00 0.000000e+00
[3,] 0.000000 0.0000000 0.02223722 0.000000000 0.000000e+00 0.000000e+00
[4,] 0.000000 0.0000000 0.00000000 0.001084693 0.000000e+00 0.000000e+00
[5,] 0.000000 0.0000000 0.00000000 0.000000000 3.243788e-05 0.000000e+00
[6,] 0.000000 0.0000000 0.00000000 0.000000000 0.000000e+00 5.234864e-07
allows reconstruction of X = U D V'
s$u %*% D %*% t(s$v) ## X = U D V'
If your code provides only the "singular values", they should match the diagonal of D given here to within whatever tolerance seems acceptable to you.
Small test cases usually work best, until you are ready to test throughput / timing.