Has anyone implemented stock prices forecasting, using php only.
Like we give data sets of 1 yr of open,high,low,close,volume and get prediction for next 15 or 30 days?
One example I saw is here https://stackoverflow.com/questions/13168568/how-do-i-use-holt-winters-seasonal-dampened-method-to-compute-a-two-month-sales
Just thought if we give a array of 1 to 10.. can next number be got - yes 11 is got, but couldnt go further than this? like getting next 5 data..
<?php
error_reporting(E_ALL);
ini_set('display_errors','On');
$anData = array(1,2,3,4,5,6,7,8,9,10);
print_r(forecastHoltWinters($anData));
function forecastHoltWinters($anData, $nForecast = 1, $nSeasonLength = 1, $nAlpha = 0.2, $nBeta = 0.01, $nGamma = 0.01, $nDevGamma = 0.1) {
// Calculate an initial trend level
$nTrend1 = 0;
for($i = 0; $i < $nSeasonLength; $i++) {
$nTrend1 += $anData[$i];
}
$nTrend1 /= $nSeasonLength;
$nTrend2 = 0;
for($i = $nSeasonLength; $i < 2*$nSeasonLength; $i++) {
$nTrend2 += $anData[$i];
}
$nTrend2 /= $nSeasonLength;
$nInitialTrend = ($nTrend2 - $nTrend1) / $nSeasonLength;
// Take the first value as the initial level
$nInitialLevel = $anData[0];
// Build index
$anIndex = array();
foreach($anData as $nKey => $nVal) {
$anIndex[$nKey] = $nVal / ($nInitialLevel + ($nKey + 1) * $nInitialTrend);
}
// Build season buffer
$anSeason = array_fill(0, count($anData), 0);
for($i = 0; $i < $nSeasonLength; $i++) {
$anSeason[$i] = ($anIndex[$i] + $anIndex[$i+$nSeasonLength]) / 2;
}
// Normalise season
$nSeasonFactor = $nSeasonLength / array_sum($anSeason);
foreach($anSeason as $nKey => $nVal) {
$anSeason[$nKey] *= $nSeasonFactor;
}
$anHoltWinters = array();
$anDeviations = array();
$nAlphaLevel = $nInitialLevel;
$nBetaTrend = $nInitialTrend;
foreach($anData as $nKey => $nVal) {
$nTempLevel = $nAlphaLevel;
$nTempTrend = $nBetaTrend;
$nAlphaLevel = $nAlpha * $nVal / $anSeason[$nKey] + (1.0 - $nAlpha) * ($nTempLevel + $nTempTrend);
$nBetaTrend = $nBeta * ($nAlphaLevel - $nTempLevel) + ( 1.0 - $nBeta ) * $nTempTrend;
$anSeason[$nKey + $nSeasonLength] = $nGamma * $nVal / $nAlphaLevel + (1.0 - $nGamma) * $anSeason[$nKey];
$anHoltWinters[$nKey] = ($nAlphaLevel + $nBetaTrend * ($nKey + 1)) * $anSeason[$nKey];
$anDeviations[$nKey] = $nDevGamma * abs($nVal - $anHoltWinters[$nKey]) + (1-$nDevGamma)
* (isset($anDeviations[$nKey - $nSeasonLength]) ? $anDeviations[$nKey - $nSeasonLength] : 0);
}
$anForecast = array();
$nLast = end($anData);
for($i = 1; $i <= $nForecast; $i++) {
$nComputed = round($nAlphaLevel + $nBetaTrend * $anSeason[$nKey + $i]);
if ($nComputed < 0) { // wildly off due to outliers
$nComputed = $nLast;
}
$anForecast[] = $nComputed;
}
return $anForecast;
}
?>