Just because some correspondent posed an interesting question concerning methods of computation of autocorrelation, I began to play with it, nearly without any knowledge about time series and autocorrelation.
The correspondent arranged his data ($32$ data points of a time series) shifted by one time lag each besides so that he had a matrix of $32\times32$ data (as I understood him) where the first row are the original data, the second row the data shifted by $1$ time unit, the next row by another one and so on. I realized this additionally by glueing the end to the tail, so making "circular" datasets.
Then, just for looking what might come out of it, I computed the correlation matrix and from this the principal components. Surprisingly I got the image of a frequency-decomposition, and (again with other data) one frequency, say that with one period in the $32$ data was in the first principal component, and that with four periods was in the second PC and so on (I got $6$ "relevant" PC's with eigenvalue $>1$). First I thought this depends on the input data, but now I assume it is systematically this way by the special construction of the data set with its circular shifts (also known as "Toeplitz" matrix). Rotations of the PC-solution to varimax or other rotation-criteria gave slightly different, and possibly interesting, results, but in general seem to provide such a frequency-decomposition.
Here is a link to pictures which I've made from the $32$-point data set; the curves are simply made from the loadings of the factormatrix: one curve the loadings on one factor. The curve of the first PC1 should show the highest amplitudes (roughly because it bears the highest sum of loadingssquares)
Questions:
- Q1: Is this a feature by design? (of PCA with this type of dataset)
- Q2: Is this approach indeed somehow usable for a serious approach to frequency-/wavelength analysis?
[update] here is the dataset (hope it shall come out being copyable for you)
-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4
-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5
-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3
0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1
2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0
4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2
6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4
5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6
3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5
1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3
1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1
0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1
-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0
-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2
-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3
0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1
3,5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0
5,7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3
7,6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5
6,7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7
7,5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6
5,4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7
4,3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5
3,2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4
2,3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3
3,5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2
5,4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3
4,3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5
3,2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4
2,3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3
3,4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2
4,-5,-3,-1,0,2,4,6,5,3,1,1,0,-2,-3,-1,0,3,5,7,6,7,5,4,3,2,3,5,4,3,2,3