Denote
$$\pmb x_i\sim\mbox{Ell}(\pmb 0,\pmb\varSigma)|i=1,\ldots,n$$
with $\pmb\varSigma$ symmetric positive definite and $\mbox{Ell}(\pmb 0,\pmb\varSigma)$ denotes a $p$ variate elliptical distribution. Denote $\pmb X_n=\{\pmb x_1,\ldots,\pmb x_n\}$ and $\pmb A(\pmb X_n)$ an estimator of scatter computed on $\pmb X_n$.
In page 217 of Robust Statistics: Theory and Methods the authors prove that affine equivariance of $\pmb A(\pmb X_n)\implies$ consistency of $\pmb A(\pmb X_n)$ for $\pmb\varSigma$ in the sense that:
$$\pmb A(\pmb X_\infty)=c\pmb\varSigma$$
Now, I wonder if this $\implies$ is not an $\iff$: naively suppose that I have an estimator $\pmb B(\pmb X_n)$ that is not affine equivariant so that $\pmb B(\pmb C\pmb X_n)\neq \pmb C\pmb B(\pmb X_n)\pmb C'$, doesn't this imply that either $\pmb B(\pmb X_n)$ must be inconsistent for $\pmb\varSigma$ or that $\pmb B(\pmb C\pmb X_n)$ is inconsistent for $\pmb C\pmb \varSigma\pmb C'$?