In the following multilevel analysis in R (taken from here, page 57):
> Model.1<-lme(WBEING~HRS+G.HRS,random=~1|GRP,data=bh1996, control=list(opt="optim"))
> summary(Model.1)
Linear mixed-effects model fit by REML
Data: bh1996
AIC BIC logLik
19222.28 19256.81 -9606.14
Random effects:
Formula: ~1 | GRP
(Intercept) Residual
StdDev:
0.1163900 0.8832353
Fixed effects: WBEING ~ HRS + G.HRS
Value Std.Error DF t-value p-value
(Intercept) 4.740829 0.21368746 7282 22.185808 <.0001
HRS -0.046461 0.00488798 7282 -9.505056 <.0001
G.HRS -0.126926 0.01940357 97 -6.541368 <.0001
Correlation:
(Intr) HRS
HRS 0.000
G.HRS -0.965 -0.252
...
How can the latter table (Correlation) be interpreted? What do these correlations mean?