$ 6,10,12\mid x\!+\!4\iff {\rm lcm}(6,10,12)\mid x\!+\!4\iff 60\mid x\!+\!4\iff x\equiv -4\equiv 56\pmod{60},\ $ because $\,{\rm lcm}(6,10,12) = {\rm lcm}(10,12)= 2\,{\rm lcm}(5,6) = 2\cdot 5\cdot 6 = 60.$
Alternatively, using brute-force CRT, the last congruence holds $\iff x = 8\! +\! 12j,\,$ hence
${\rm mod}\ 10\!:\,\ 6 \equiv x = 8\!+\!12\color{#c00}j \iff 2j\equiv -2\iff 2j= -2\!+\!10k\iff \color{#c00}{j=-1\!+\!5k},\,$ thus
we have that $\,x = 8\!+\!12(\color{#c00}{-1\!+\!5k}) = -4\!+\!60k\,$ $\Rightarrow$ $\, x\equiv -4\equiv 2\pmod 6,\,$ so we are done.
Or the first congruence is redundant by $\,x\equiv 8\pmod{\!12}\Rightarrow x = 8+12j\Rightarrow x\equiv 2\pmod{\!6}.\,$ thus we need only solve the last $2$ congruences. For variety we show how do do this using the fractional extended Euclidean algorithm.
$\begin{align} x&\equiv 6\!\!\!\pmod{\!10}\\ x&\equiv 8\!\!\!\pmod{\!12}\end{align}$
$\iff \begin{align} 6x&\equiv 36\!\!\!\pmod{\!60}\\ 5x&\equiv 40\!\!\!\pmod{\!60}\end{align}$
${\rm mod}\,\ 60\!:\,\ x\equiv \dfrac{36}{6} \overset{\large\frown}\equiv \dfrac{40}{\color{#90f}{5}} \overset{\large\frown}\equiv \dfrac{\color{#c00}{-4}}{\color{#0a0}{1}} $
$\!\begin{array}{rrl} \text{or, equationally:} \ \ [\![1]\!]\!:\!\!\!& 6\,x\!\!\!&\equiv\ \ 36\\ [\![2]\!]\!:\!\!\!& \color{#90f}{5}\,x\!\!\!&\equiv\ \ 40\\ [\![1]\!]-[\![2]\!]=:[\![3]\!]\!:\!\!\!& \color{#0a0}{1}\,x\!\!\!&\equiv \color{#c00}{-4} \end{array}$