Let $f: \mathbb{R}^2 \rightarrow \mathbb{R}$, $f \in C^2$. Show that $f$ is convex function iff Hessian matrix is nonnegative-definite.
$f(x,y)$ is convex if $f( \lambda x + (1-\lambda )y) \le \lambda f(x) + (1- \lambda)f(y)$ for any $x,y \in \mathbb{R}^2$.
Hessian matrix is nonnegative-definite if $f_{xx}'' x^2 + f_{x,y}(x+y) + f_{yy}''y^2 \ge 0$
I know the definition but I have no idea how prove the If and only if condition or first and second implication?