In the $\lambda \to \infty $ limit, approximate the integral $$I(\lambda )=\int\limits_{0}^{\infty }e^{-\lambda (x-1)^2(x-2)^2}dx$$
I understand that the function $-\lambda (x-1)^2(x-2)^2$ reaches a minimum at the points $x = 1$ and $x = 2$, so you can decompose the function $$x=1\Rightarrow -\lambda (x-1)^2(x-2)^2 \approx -\lambda (x-1)^2$$ $$x=2\Rightarrow -\lambda (x-1)^2(x-2)^2 \approx -\lambda (x-2)^2$$
$$I(\lambda )=\int\limits_{0}^{\infty }e^{-\lambda (x-1)^2(x-2)^2}dx\approx \int\limits_{0}^{\infty }e^{-\lambda (x-1)^2}dx+\int\limits_{0}^{\infty }e^{-\lambda (x-2)^2}dx$$
How do I calculate these integrals? As I understand it, they are not expressed in terms of elementary functions