Let $a_i > 0$ forall $1 \leq i \leq n$ and let $M(x) := \big(\frac{\sum_{i = 1}^n a_i^x}{n} \big)^{\frac{1}{x}}$ be the power means function. It is well known that the power means function is non-decreasing.
I am interested in the concavity properties of $M(x)$ but checking if $M''(x) \geq 0$ seems to be too difficult.
I was able to compute $M''(x)$. Let $M(x) = f(x)^{\frac{1}{x}}$ where $f(x) = \frac{\sum_{i=1}^n a_i^x}{n}$. Then I was able to find: $$ \frac{M''(x) f^2(x)}{\big(\frac{M(x)}{x^4} \big)} = (xff' - f \ln f)^2 + x^3(ff'' - f'^2) - 2x(xff' - f^2 \ln f) $$ where $'$ denotes derivative and number denotes powers. Checking the sign of $M''(x)$ is equivalent to the checking the sign of the RHS. This terms seem too hard to check for positivity. Can anyone help? I know for a fact that $M(x)$ is convex and concave on different intervals, but I can't find these intervals. Can anyone help?