Let $G \subseteq S_8$ be generated by the elements $s=\begin{pmatrix} 1 & 2 \end{pmatrix}\begin{pmatrix} 3 & 5 \end{pmatrix}\begin{pmatrix} 4 & 6 \end{pmatrix}\begin{pmatrix} 7 & 8 \end{pmatrix}$ and $t=\begin{pmatrix} 1 & 3 & 7 & 4 \end{pmatrix}\begin{pmatrix} 2 & 5 & 8 & 6 \end{pmatrix}$.
Now I would like to see how to write the element $$u = \begin{pmatrix} 1 & 8 \end{pmatrix}\begin{pmatrix} 2 & 7 \end{pmatrix}\begin{pmatrix} 3 & 6 \end{pmatrix}\begin{pmatrix} 4 & 5 \end{pmatrix} \in S_8$$ can be written as a product of $s,s^{-1}$ and $t,t^{-1}$ in MAGMA (assuming that $u \in G$).
I wrote the following code
G<s,t> := PermutationGroup< 8 | (1, 2)(3, 5)(4, 6)(7, 8) , (1, 3, 7, 4)(2, 5, 8, 6) >;
u := G ! (1, 8)(2, 7)(3, 6)(4, 5);
Are there any commands to give me my desired result?