Is there a way to enumerate the boolean matrix of $k$ entries of $1$ with no rows and columns all being $0$s?
e.g.
$k=1$, $\begin{bmatrix}1\end{bmatrix}$
$k=2$, $\begin{bmatrix}1 & 1\end{bmatrix}$ $\begin{bmatrix}1 \\ 1\end{bmatrix}$ $\begin{bmatrix}1 & 0\\ 0 & 1\end{bmatrix}$ $\begin{bmatrix}0 & 1\\1 & 0\end{bmatrix}$
$k=3$, $\begin{bmatrix}1 & 1 & 1\end{bmatrix}$ $\begin{bmatrix}1 & 1 & 0\\ 0&0&1\end{bmatrix}$ $\begin{bmatrix}1 & 1\\0&1\end{bmatrix}$ $\begin{bmatrix}1 & 0&1\\0&1&0\end{bmatrix}$ $\begin{bmatrix}1 & 1\\1&0\end{bmatrix}$ $\begin{bmatrix}0&1 & 1\\1&0&0\end{bmatrix}$ $\begin{bmatrix}1&0&0\\0&1 & 1\end{bmatrix}$ $\begin{bmatrix}1&0\\1 & 1\end{bmatrix}$ $\begin{bmatrix}0&1&0\\1&0 & 1\end{bmatrix}$ $\begin{bmatrix}0&1\\1 & 1\end{bmatrix}$ $\begin{bmatrix}0&0&1\\1 & 1&0\end{bmatrix}$ $\begin{bmatrix}1 \\ 1\\1\end{bmatrix}$ $\begin{bmatrix}0&1 \\0& 1\\1&0\end{bmatrix}$ $\begin{bmatrix}0&1 \\ 1&0\\0&1\end{bmatrix}$ $\begin{bmatrix}1&0 \\ 0&1\\0&1\end{bmatrix}$ $\begin{bmatrix}0&1 \\ 1&0\\1&0\end{bmatrix}$ $\begin{bmatrix}1&0 \\ 0&1\\1&0\end{bmatrix}$ $\begin{bmatrix}1&0 \\ 1&0\\0&1\end{bmatrix}$ $\begin{bmatrix}1&0&0\\0&1&0\\0&0&1\end{bmatrix}$ $\begin{bmatrix}1&0&0\\0&0&1\\0&1&0\end{bmatrix}$ $\begin{bmatrix}0&1&0\\1&0&0\\0&0&1\end{bmatrix}$ $\begin{bmatrix}0&1&0\\0&0&1\\1&0&0\end{bmatrix}$ $\begin{bmatrix}0&0&1\\1&0&0\\0&1&0\end{bmatrix}$ $\begin{bmatrix}0&0&1\\0&1&0\\1&0&0\end{bmatrix}$
$k=4$,...
There is a trivial inductive approach that we can just consider where to put the $k$th $1$ based on all of the $(k-1)$th configurations. However, this will make $k!$ duplications for each unique configuration.
Another possible approach is that we can maybe partition $k$ by the rows and columns first. Say $k=4$, partition the rows into $2,1,1$ and cols into $1,1,2$ then enumerate the $3 \times 3$ configurations that satisfy the row col number of $1$s correspondingly. But we still need to consider how to enumerate the balanced matrix efficiently.
Now is there an easy way to enumerate all possibilities? If not, can we find an easy enumerator for just half of all the cases?