I want to find an analog of Euler function $\varphi_{R}(a)$ that determines the number of invertible elements in the quotient ring
$$R = \mathbb{F}_p[x]/(a), \text{ for } a \in \mathbb{F}_p[x]$$
where $\mathbb{F}_p[x]$ is a Euclidian domain with standard norm $N(f(x)) := \deg f(x)$.
UPD: I tried the following:
Case 1: $a$ is prime $\Rightarrow \mathbb{F}_p[x]/(a)$ is field then $$\varphi_R(a) = |\mathbb{F}_p[x]/(a) \setminus \{0\}| = p^{deg(a)} - 1$$
Case 2: take factorization $a = a_1^{e_1} \dots a_n^{e_n}$ then
$$R \simeq \mathbb{F}_p[x]/(a_1^{e_1}) \oplus \mathbb{F}_p[x]/(a_2^{e_2}) \oplus \cdots\oplus\mathbb{F}_p[x]/(a_n^{e_n})$$
R is finite ring then
$$\forall g \in R((g \text{ is zero divisor}) \vee (g \text{ is invertible}))$$
$$(g \text{ is zero divisor}) \iff \vee_{i = 1}^n(a_i | g)$$
Every element $g \in R$ now can be represented as following:
$$g = (g (\text{mod } a_1^{e_1}),\dots,g(\text{mod } a_n^{e_n}))$$ $$a_i | g \iff \exists i =1\dots n : g (\text{mod }a_i^{e_i}) = 0$$ So we can conclude
$$\varphi_R(a) = p^{deg(a)} - \prod_{i = 1}^n(p^{c_i} - 1), \text{ where } c_i = \deg(a_i^{e_i})$$
Is this answer correct?