1

Lastly I have read a example of some exercise. There was this statement: $$99x^2 \equiv 1 \pmod 5\quad \implies\quad (-1)x^2 \equiv 1 \pmod 5$$ Can somebody explain that simple fact to me?

Théophile
  • 26,290
  • 5
  • 37
  • 53
trolley
  • 805
  • 4
  • 15

4 Answers4

2

Since we have $$99\equiv -1 \mod 5$$ this is the reason.

Dr. Sonnhard Graubner
  • 94,826
  • 4
  • 38
  • 78
2

Because $99\equiv 4 \equiv -1 \mod 5$

pwerth
  • 3,850
  • 9
  • 18
2

$$99\equiv 4=(5-1)\equiv -1 \pmod{5}$$

:)

Kandinskij
  • 4,300
  • 1
  • 8
  • 29
2

$$99x^2\equiv_5100x^2-x^2\equiv_50-x^2\equiv_5-x^2$$

cansomeonehelpmeout
  • 12,078
  • 3
  • 18
  • 46