0

Let $$x=0.99999\ldots.$$

Clearly $x$ is a rational number.

I want to find $a,b$ such that $$x=\frac{a}{b}.$$

Clearly $10x-x=9$ and thus $x=1$. So $$1=0.99999\ldots$$

Where is my mistake?

dmtri
  • 3,216
  • 3
  • 14
  • 29
Schüler
  • 3,334
  • 1
  • 8
  • 25

1 Answers1

6

There is no mistake. $0{,}\overline{9} =1$ is a true statement.


Other proofs of the statement include:

$$\begin{align}0{,}\overline{9} &= 0{,}9 + 0{,}09+0{,}009+\cdots \\&=\sum_{k=1}^{\infty}9\cdot 10^{-k} \\&=9\cdot \sum_{k=1}^\infty 10^{-k} \\&=9\cdot \frac{1}{10-1} = 1\end{align}$$

or, less strictly, the thought that $\frac19=0{,}11111111\dots$, which means that $1=9\cdot \frac19 = 0{,}99999999\dots$.

ℋolo
  • 9,783
  • 2
  • 15
  • 39
5xum
  • 120,202
  • 6
  • 125
  • 199