-2

I can't work out how to prove this equation is true by proof of mathematical

Use mathematical induction to prove that, for $n \ge 3$

$$\sum_{j=3}^n \binom{j-1}{2} = \binom{n}{3}$$

Please help, thanks

Eric Wofsey
  • 316,550
  • 27
  • 399
  • 613
  • An easier combinatorial argument: Count how many three-element subsets there are of $\{1,2,3,\dots,n\}$ 1) Directly 2) By breaking into cases based on the largest element appearing. – JMoravitz Jul 20 '18 at 02:23
  • Related: [Hockey Stick Identity](https://math.stackexchange.com/questions/1490794/proof-of-the-hockey-stick-identity-sum-limits-t-0n-binom-tk-binomn1). – JMoravitz Jul 20 '18 at 02:24
  • Possible duplicate of [Proof of the Hockey-Stick Identity: $\sum\limits_{t=0}^n \binom tk = \binom{n+1}{k+1}$](https://math.stackexchange.com/questions/1490794/proof-of-the-hockey-stick-identity-sum-limits-t-0n-binom-tk-binomn1) – JMoravitz Jul 20 '18 at 02:24
  • The original question did ask for you to prove something similar to Hockey-Stick identity. $\binom{n}{r} + \binom{n}{r+1} = \binom{n+1}{r+1}$ before this equation – Harry Michael Kirwan Jul 20 '18 at 03:21
  • Some other related posts: [Evaluate $\sum\limits_{k=1}^n k^2$ and $\sum\limits_{k=1}^n k(k+1)$ combinatorially](https://math.stackexchange.com/q/43317) and [Simplify triangular sum of triangular numbers: $\sum_{i=1}^{n}(\frac12i(i+1))$](https://math.stackexchange.com/q/1642906). Also other posts [linked to the latter](https://math.stackexchange.com/questions/linked/1642906) might be of interest. – Martin Sleziak Jul 20 '18 at 08:08

1 Answers1

0

Assume $$\sum_{j=3}^n \binom{j-1}{2} = \binom{n}{3}$$ is true. Let's prove $$\sum_{j=3}^{n+1} \binom{j-1}{2} = \binom{n+1}{3}$$ So $$\sum_{j=3}^{n+1} \binom{j-1}{2} = \sum_{j=3}^{n} \binom{j-1}{2} + \binom{n}{2} = \binom{n}{3}+ \binom{n}{2} = \frac{n!}{3!(n-3)!}+\frac{n!}{2!(n-2)!} = \frac{(n+1)!}{3!(n-2)!} = \binom{n+1}{3}$$

Ahmad Bazzi
  • 11,929
  • 2
  • 14
  • 29