-2

Here is an other random conjecture which I have no clue how to prove:

$a,b\in\mathbb N^+\wedge a^2+b^2+ab\in\mathbb P\implies\exists$ $A,B\in\mathbb N^+:A^2+B^2-AB=a^2+b^2+ab$.

Tested for $a,b<20,000$ on my 32 bit tabloid.

I would like to see a proof or an counter-example.

Lehs
  • 13,613
  • 4
  • 24
  • 76

2 Answers2

3

$$(a+b)^2-(a+b)b+b^2=a^2+ab+b^2.$$

Angina Seng
  • 156,293
  • 28
  • 101
  • 199
  • Better to bring the innate symmetry to the fore rather than pull the answer out of a hat - see my answer (and see [reflections on conics and Vieta jumping.](https://math.stackexchange.com/a/1898116/242) – Bill Dubuque Sep 02 '17 at 18:27
1

Hint $ $ If $\,x_1=a\,$ is a root of $\,f(x)\ =\ x^2+\,\color{#c00}b\,x+b^2\,$ then so too is $\,\overbrace{x_2 = -\color{#c00}b-x_1}^{\large {\rm root\ sum}\ =\ -\color{#c00}b} = -b-a$

So $\,-x_2 = a\!+\!b\,$ is a root of $\,f(-x) = x^2-b\,x+b^2$

Bill Dubuque
  • 265,059
  • 37
  • 279
  • 908